生成用PyTorch编写的提取自按照如下要求生成代码。首先用PyTorch自定义一个 CNN 网络 ,其中包含卷积层、池化层和全连接层。然后,我们选定指定层之前的所有层,并用这些层构建一个新的模型。最后,我们用新模型进行预测。己编写的CNN网络选定层之前的所有层的代码
时间: 2024-01-21 21:19:33 浏览: 80
CNN_classification_feature_extraction:PyTorch中的CNN模型用于分类和特征提取
5星 · 资源好评率100%
以下是一个示例代码,其中包含一个自定义的CNN网络,并选定了指定层之前的所有层:
```python
import torch.nn as nn
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
# 定义卷积层
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
# 定义池化层
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 定义全连接层
self.fc1 = nn.Linear(in_features=128 * 8 * 8, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=10)
def forward(self, x):
# 卷积层
x = self.conv1(x)
x = nn.ReLU()(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.ReLU()(x)
x = self.pool(x)
x = self.conv3(x)
x = nn.ReLU()(x)
x = self.pool(x)
# 全连接层
x = x.view(-1, 128 * 8 * 8)
x = self.fc1(x)
x = nn.ReLU()(x)
x = self.fc2(x)
return x
# 选定指定层之前的所有层
class NewModel(nn.Module):
def __init__(self):
super(NewModel, self).__init__()
# 定义卷积层
self.conv1 = nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
# 定义池化层
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
# 定义全连接层
self.fc1 = nn.Linear(in_features=128 * 8 * 8, out_features=512)
def forward(self, x):
# 卷积层
x = self.conv1(x)
x = nn.ReLU()(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.ReLU()(x)
x = self.pool(x)
x = self.conv3(x)
x = nn.ReLU()(x)
x = self.pool(x)
# 全连接层
x = x.view(-1, 128 * 8 * 8)
x = self.fc1(x)
x = nn.ReLU()(x)
return x
```
在这个例子中,我们首先定义了一个自定义的CNN网络,包含卷积层、池化层和全连接层。然后,我们定义了一个新模型,该模型仅包含指定层之前的所有层。最后,我们在新模型上进行预测。
阅读全文