r语言这张图改的好看一点 ```{r} month=global3 %>% group_by(Month,movement_type) %>% summarise(count=n()) month$Month<-as.character(month$Month) ####创建净流入表并合并 month1<-data.frame(Month=c("2019-01-01","2019-02-01","2019-03-01","2019-04-01","2019-05-01","2019-06-01","2019-07-01","2019-08-01","2019-09-01"), movement_type=c("净流入"), count=c("1","-4","5","2","4","11","5","14","8")) month1$count<-as.integer(month1$count) month<-rbind(month,month1) t4<-echartr(month, Month, count,movement_type, type='line') %>% setTitle('月变动情况')%>% setSymbols('emptycircle')%>% setTheme("macarons")%>% setToolbox(show=FALSE) t4 ```

时间: 2023-07-18 09:38:12 浏览: 135
PDF

右上方小图-v833/v831_datasheet_v1.0

可以尝试以下修改: ```{r} library(ggplot2) library(dplyr) month <- global3 %>% group_by(Month, movement_type) %>% summarise(count = n()) %>% ungroup() %>% mutate(Month = format(as.Date(Month), "%Y-%m")) month1 <- data.frame(Month = c("2019-01", "2019-02", "2019-03", "2019-04", "2019-05", "2019-06", "2019-07", "2019-08", "2019-09"), movement_type = c("净流入"), count = c(1, -4, 5, 2, 4, 11, 5, 14, 8)) month1$count <- as.integer(month1$count) month <- rbind(month, month1) ggplot(month, aes(x = Month, y = count, color = movement_type)) + geom_line(size = 1.2) + labs(title = "月变动情况") + scale_color_manual(values = c("#0072B2")) + theme_minimal() + theme(plot.title = element_text(hjust = 0.5)) ``` 这里使用 `ggplot2` 作图,并对数据做了一些预处理,让图更加美观和易读。
阅读全文

相关推荐

% 导入数据 data = xlsread('数据文件.xlsx'); % 替换为实际数据文件的路径 X = data(:, 1:3); % 输入特征,假设有三个特征 Y = data(:, 4); % 输出目标 % 数据预处理 X = (X - mean(X)) / std(X); % 标准化输入特征 % 划分训练集和测试集 trainRatio = 0.8; % 训练集比例 validationRatio = 0.1; % 验证集比例 testRatio = 0.1; % 测试集比例 [trainInd, valInd, testInd] = dividerand(size(X, 1), trainRatio, validationRatio, testRatio); XTrain = X(trainInd, :)'; YTrain = Y(trainInd)'; XVal = X(valInd, :)'; YVal = Y(valInd)'; XTest = X(testInd, :)'; YTest = Y(testInd)'; % 构建LSTM网络 inputSize = size(XTrain, 1); numHiddenUnits = 100; % LSTM隐藏单元数量 outputSize = 1; layers = [ ... sequenceInputLayer(inputSize) lstmLayer(numHiddenUnits, 'OutputMode', 'sequence') fullyConnectedLayer(outputSize) regressionLayer]; % 设置训练选项 maxEpochs = 100; miniBatchSize = 64; initialLearnRate = 0.001; options = trainingOptions('adam', ... 'MaxEpochs', maxEpochs, ... 'MiniBatchSize', miniBatchSize, ... 'InitialLearnRate', initialLearnRate, ... 'ValidationData', {XVal, YVal}, ... 'Plots', 'training-progress'); % 训练LSTM网络 net = trainNetwork(XTrain, YTrain, layers, options); % 测试网络性能 YPred = predict(net, XTest); rmse = sqrt(mean((YPred - YTest).^2)); fprintf('测试集的均方根误差(RMSE):%f\n', rmse); % 绘制预测结果与真实值 figure; plot(1:length(YTest), YTest, 'b', 1:length(YTest), YPred, 'r--'); legend('真实值', '预测值'); xlabel('样本序号'); ylabel('目标值'); title('预测结果');

% 读入语音 [Input, Fs] = audioread('sp01.wav'); Time = (0:1/Fs:(length(Input)-1)/Fs)'; Input = Input(:,1); SNR=10; [NoisyInput,Noise] = add_noise(Input,SNR);%加噪 %% 算法 [spectruesub_enspeech] = spectruesub(NoisyInput); [wiener_enspeech] = wienerfilter(NoisyInput); [Klaman_Output] = kalman(NoisyInput,Fs,Noise); %将长度对齐 sig_len=length(spectruesub_enspeech); NoisyInput=NoisyInput(1:sig_len); Input=Input(1:sig_len); wiener_enspeech=wiener_enspeech(1:sig_len); Klaman_Output=Klaman_Output(1:sig_len); Time = (0:1/Fs:(sig_len-1)/Fs)'; figure(1) MAX_Am(1)=max(Input); MAX_Am(2)=max(NoisyInput); MAX_Am(3)=max(spectruesub_enspeech); subplot(3,1,1); plot(Time, Input) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('原始') subplot(3,1,2); plot(Time, NoisyInput) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('加噪') subplot(3,1,3); plot(Time, spectruesub_enspeech) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('谱减法') figure(2) MAX_Am(1)=max(Input); MAX_Am(2)=max(NoisyInput); MAX_Am(3)=max(wiener_enspeech); subplot(3,1,1); plot(Time, Input) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('原始') subplot(3,1,2); plot(Time, NoisyInput) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('加噪') subplot(3,1,3); plot(Time, wiener_enspeech) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('维纳滤波') figure(3) MAX_Am(1)=max(Input); MAX_Am(2)=max(NoisyInput); MAX_Am(3)=max(Klaman_Output); subplot(3,1,1); plot(Time, Input) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('原始') subplot(3,1,2); plot(Time, NoisyInput) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('加噪') subplot(3,1,3); plot(Time, Klaman_Output) ylim([-max(MAX_Am),max(MAX_Am)]); xlabel('Time') ylabel('Amlitude') title('卡尔曼滤波')

为我将将第二张图的画图方式改为pcolor,并模拟运行结果# -- coding: utf-8 -- """ Created on Thu Jun 1 17:06:08 2023 @author: Rayquaza """ import numpy as np import matplotlib.pyplot as plt def ricker(f, length, dt): t = np.arange(-length/2,(length-dt)/2, dt) y = (1.0 - 2.0*(np.pi2)(f2)(t2)) * np.exp(-(np.pi2)(f2)(t2)) return t,y Frequency = 20 length = 0.128 dt = 0.001 t0, w0 = ricker(Frequency, length, dt) rho = np.array([1.6, 2.4, 1.8]) v = np.array([2000, 3000, 2200]) x = np.arange(0, 500, 1) t = np.arange(0, 0.3, dt) Z = rho*v d_model = np.zeros((2, 500)) for i in range(500): d_model[0, i] = 200 if i < 50: d_model[1, i] = 200 elif i < 250 and i >= 50: d_model[1, i] = 200 + (i-50) elif i >=250: d_model[1, i] = 400 t1 = np.zeros((2, 500)) t1[0, :] = d_model[0,:] / v[1] for i in range(500): t1[1, i] = (d_model[1, i] - d_model[0, i]) / v[2] + t1[0, i] L = np.zeros(2) for i in range(2): L[i] = (Z[i+1] - Z[i]) / (Z[i+1] + Z[i]) L1 = np.zeros([300, 500]) for i in range(2): for j in range(500): if j < 50: L1[int(np.round(t1[i,j]/dt)),j] = (Z[2]-Z[0]) / (Z[2]+Z[0]) else: L1[int(np.round(t1[i,j]/dt)),j] = L[i] syn = np.zeros((300, 500)) for j in range(500): syn[: , j] = np.convolve(L1[:,j], w0, 'same') fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(18, 9)) axes[0].plot(w0, t0, 'b-') axes[0].xaxis.set_ticks_position('top') axes[0].invert_yaxis() axes[0].set_title("Amplitude", fontsize = 12) axes[0].set_ylabel("Time(s)",fontsize = 12) X, T = np.meshgrid(x, t) c = axes[1].contour(X, T, L1) axes[1].xaxis.set_ticks_position('top') axes[1].invert_yaxis() axes[1].set_title("Reflection Coefficient", fontsize = 12) axes[1].set_ylabel("Eight-Way Travel Time(s)",fontsize = 12) c_map = axes[2].pcolormesh(X, T, syn, cmap='bwr', shading='auto') axes[2].xaxis.set_ticks_position('top') axes[2].invert_yaxis() axes[2].set_xlabel("Amplitude", fontsize = 12) axes[2].set_ylabel("Two-Way Travel Time(s)",fontsize = 12) fig.colorbar(c_map, ax=axes[2]) fig.suptitle('Two-Layer Synthetic Seismogram', fontsize = 18) plt.tight_layout() plt.show()

最新推荐

recommend-type

yolov5s nnie.zip

yolov5s nnieyolov5-nnieyolov5s nnieYOLOv5 pytorch -> onnx -> caffe -> .wk 1、模型是yolov5s,将focus层替换成stride为2的卷积层。reshape和permute层也做了调整。具体的修改过程可以参考这个大佬的文章https://blog.csdn.net/tangshopping/article/details/1100386052、模型是在hi3559av100上跑的,mapper版本是1.2。3、用法mkdir buildcd buildcmake -DCMAKE_TOOLCHAIN_FILE=../hi3559.toolchain.cmake ..make -j4./yolo_nnie参考https://blog.csdn.net/tangshopping/article/details/110038605watermelooon/nnie_yolohttps://github.com/ultralytics/yolov5https://githu
recommend-type

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明

基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明,本基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源中的源码都是经过本地编译过可运行的,评审分达到98分,基于uni-app+uview-ui开发的校园云打印系统微信小程序项目源码+文档说明资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。 本资源中的源码都是经过本地编译过可运行的,评审分达到98分,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、毕业设计、期末大作业和课程设计使用需求,如果有需要的话可以放心下载使用。本资源中的源码都是经过本地编译过可运行的,评审分达到98分
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自
recommend-type

如何在Springboot后端项目中实现前端的多人视频会议功能,并使用Vue.js与ElementUI进行界面开发?

要在Springboot后端项目中实现前端的多人视频会议功能,首先需要了解Springboot、WebRTC、Vue.js以及ElementUI的基本概念和用途。Springboot作为后端框架,负责处理业务逻辑和提供API接口;WebRTC技术则用于实现浏览器端的实时视频和音频通信;Vue.js作为一个轻量级的前端框架,用于构建用户界面;ElementUI提供了丰富的UI组件,可加速前端开发过程。 参考资源链接:[多人视频会议前端项目:Springboot与WebRTC的结合](https://wenku.csdn.net/doc/6jkpejn9x3?spm=1055.2569.3001