怎样在dateframe对象一列值的英文进行词云统计中删除特定词并只保留名词
时间: 2024-05-06 11:16:18 浏览: 48
你可以使用Python中的nltk(Natural Language Toolkit)库来实现这个功能。首先,你需要安装nltk库并下载其词性标注器,然后按照以下步骤进行操作:
1. 导入必要的库:
```python
import pandas as pd
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import pos_tag
from wordcloud import WordCloud
```
2. 读取数据并去除特定词:
```python
df = pd.read_csv('your_data.csv')
# 去除特定词
stop_words = set(['word1', 'word2', 'word3'])
df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if word.lower() not in stop_words]))
```
3. 进行词性标注并只保留名词:
```python
# 进行词性标注并只保留名词
df['text'] = df['text'].apply(lambda x: ' '.join([word for word, pos in pos_tag(word_tokenize(x)) if pos.startswith('N')]))
```
4. 统计词频并生成词云:
```python
# 统计词频并生成词云
text = ' '.join(df['text'])
wordcloud = WordCloud(width=800, height=800, background_color='white', colormap='RdYlBu').generate(text)
```
完整代码如下:
```python
import pandas as pd
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk import pos_tag
from wordcloud import WordCloud
# 读取数据并去除特定词
df = pd.read_csv('your_data.csv')
stop_words = set(['word1', 'word2', 'word3'])
df['text'] = df['text'].apply(lambda x: ' '.join([word for word in x.split() if word.lower() not in stop_words]))
# 进行词性标注并只保留名词
df['text'] = df['text'].apply(lambda x: ' '.join([word for word, pos in pos_tag(word_tokenize(x)) if pos.startswith('N')]))
# 统计词频并生成词云
text = ' '.join(df['text'])
wordcloud = WordCloud(width=800, height=800, background_color='white', colormap='RdYlBu').generate(text)
```
希望能对你有所帮助!
阅读全文