用matlab任意定义一个有限长时间信号x1(t),根据式2.1产生一个周期信号,绘制x1(t)和x(t)的图形。
时间: 2024-05-26 18:10:58 浏览: 184
好的,这个问题属于数学问题,我可以回答。以下是回答:
根据式2.1,一个周期为T的周期信号可以表示为:
x(t) = x1(t mod T) (2.1)
其中,t mod T表示t除以T的余数。
例如,如果有一个有限长时间信号x1(t),我们可以定义它为:
x1(t) = sin(2πft) + 0.5sin(4πft)
其中,f为信号的频率。
假设我们要产生一个周期为T=1秒的周期信号,那么根据式2.1,这个周期信号可以表示为:
x(t) = x1(t mod 1) = x1(t - 1)
也就是说,在每个1秒的周期内,x(t)的取值与x1(t-1)的取值相同。
接下来,我们可以用matlab来绘制x1(t)和x(t)的图形。具体代码如下:
% 定义有限长时间信号x1(t)
t = 0:0.001:2;
x1 = sin(2*pi*2*t) + 0.5*sin(2*pi*4*t);
% 绘制x1(t)的图形
subplot(2,1,1)
plot(t,x1)
xlabel('t')
ylabel('x1(t)')
title('Finite length time signal')
% 根据式2.1产生周期信号x(t)
T = 1; % 周期为1秒
x = sin(2*pi*2*(mod(t,T))) + 0.5*sin(2*pi*4*(mod(t,T)));
% 绘制x(t)的图形
subplot(2,1,2)
plot(t,x)
xlabel('t')
ylabel('x(t)')
title('Periodic signal')
运行这段matlab代码,就可以得到x1(t)和x(t)的图形。
阅读全文
相关推荐

















