适应度值是什么: def swap_mutation(self,p1): D = len(p1) c1 = p1.copy() r = np.random.uniform(size=D) for idx1, val in enumerate(p1): if r[idx1] <= self.pm: idx2 = np.random.choice(np.delete(np.arange(D), idx1)) c1[idx1], c1[idx2] = c1[idx2], c1[idx1] return c1 def Elite(self): Fit=dict(enumerate(self.Fit)) Fit=list(sorted(Fit.items(),key=lambda x:x[1])) idx=[] for i in range(self.N_elite): idx.append(Fit[i][0]) return idx
时间: 2024-01-18 08:02:12 浏览: 89
push_swap::card_file_box:push_swap @ 19-优化的堆栈排序
适应度值是在遗传算法中用来衡量个体适应度的指标,通常用来评价个体在某个环境下的生存能力或者适应能力。在这段代码中,Fit是一个列表,其中存储了每个个体的适应度值,Elite函数根据适应度值对个体进行排序,选取前N_elite个适应度值最高的个体作为精英个体,并返回它们的索引值。这些精英个体可以通过交叉、变异等操作来产生新的个体,从而提高整个种群的适应度。
阅读全文