fn.append(line.split('\n')[0])

时间: 2024-06-06 08:05:26 浏览: 134
这行代码是 Python 语言中的一个列表操作,其中 `fn` 是一个列表对象,`append()` 是列表对象的一个方法,用于在列表末尾添加一个元素。`line.split('\n')[0]` 则是将字符串 `line` 按照换行符 `\n` 进行分割,得到一个字符串列表,然后取其中第一个元素作为新的列表元素添加到 `fn` 列表中。这行代码的目的是将一个文件中的每一行作为列表中的一个元素,并去除每行末尾的换行符。
相关问题

with open(fn_path,'r') as f: for line in f.readlines(): fn.append(line.split('\n')[0])

这段代码的作用是读取一个文件,将每一行的内容添加到一个列表中,并返回该列表。 具体的解释如下: - `open(fn_path,'r')` 打开一个文件,使用只读模式(`'r'`),并返回一个文件对象; - `with` 语句可以自动关闭文件,可以避免因为程序意外崩溃导致文件没有被关闭的问题; - `f.readlines()` 读取文件中的所有行,返回一个包含所有行内容的列表; - `for line in f.readlines()` 遍历所有行; - `line.split('\n')[0]` 去掉每一行末尾的换行符,并将该行添加到名为 `fn` 的列表中; - 最后,`with` 语句块结束,文件会自动关闭,并且返回 `fn` 列表。

优化代码import os import re import pandas as pd from pandas import DataFrame lst1=[] lst2=[] path1 = r'D:\C-cn' path2 = r'D:\C-en' files1 = os.listdir(path1) files2 = os.listdir(path2) lst1=[] lst2=[] reg1=re.compile(r"[^。?!…]*[。?!……]") reg2=re.compile(r'.*\.[\n ]') df1 = [] df2 = [] for i in range(0,39): domain=os.path.abspath(r'D:\C-cn') file1=os.path.join(domain,files1[i]) fn = open(str(file1),encoding='gbk') f1 = fn.readlines() #print(f1) for line in f1: line=line.rstrip('\n') if "。" not in line: lst1.append(line) else: lis=reg1.findall(line) for j in lis: lst1.append(j) data1=DataFrame({"Chinese":lst1}) df1.append(data1) df1 = pd.concat(df1) df1.to_excel("Chinese.xlsx",index="false") for i in range(0,39): domains=os.path.abspath(r'D:\C-en') file2=os.path.join(domains,files2[i]) ft = open(str(file2),encoding='gbk') f2 = ft.readlines() print(f2) for line in f2: if "." not in line: line=line.rstrip("\n") lst2.append(line) else: liss=line.split(". ") for j in liss: j=j+"." lst2.append(j) data2=DataFrame({"English":lst2}) df2.append(data2) df2 = pd.concat(df2)# 合并所有数据 df2.to_excel("English.xlsx",index="false")

这段代码可以进行一些优化,包括: 1. 将重复的代码封装成函数,避免重复代码。 2. 不需要在每次迭代时都重新初始化 `lst1` 和 `lst2` 列表,可以将其初始化放在循环外面。 3. 在使用 `pandas` 库时,最好使用 `read_csv()` 函数和 `to_csv()` 函数,而不是 `DataFrame()` 和 `to_excel()` 函数。 下面是优化后的代码: ```python import os import re import pandas as pd def get_sentences(file_path, regex): with open(file_path, encoding='gbk') as f: lines = f.readlines() sentences = [] for line in lines: line = line.rstrip('\n') if "。" not in line: sentences.append(line) else: lis = regex.findall(line) for j in lis: sentences.append(j) return sentences def get_english_sentences(file_path): with open(file_path, encoding='gbk') as f: lines = f.readlines() sentences = [] for line in lines: if "." not in line: line = line.rstrip("\n") sentences.append(line) else: liss = line.split(". ") for j in liss: j = j + "." sentences.append(j) return sentences path1 = r'D:\C-cn' path2 = r'D:\C-en' files1 = os.listdir(path1) files2 = os.listdir(path2) reg1 = re.compile(r"[^。?!…]*[。?!……]") reg2 = re.compile(r'.*\.[\n ]') lst1 = [] for i in range(0, 39): file1 = os.path.join(path1, files1[i]) lst1 += get_sentences(file1, reg1) lst2 = [] for i in range(0, 39): file2 = os.path.join(path2, files2[i]) lst2 += get_english_sentences(file2) df1 = pd.DataFrame({"Chinese": lst1}) df1.to_csv("Chinese.csv", index=False) df2 = pd.DataFrame({"English": lst2}) df2.to_csv("English.csv", index=False) ``` 这里将中文和英文的句子分别存储到了 `Chinese.csv` 和 `English.csv` 文件中,以便后续的处理和分析。
阅读全文

相关推荐

import csv import glob import os path = "D:\cclog\cclog" class StartUpTimeAnalysis: def init(self,fn): ext = os.path.splitext(fn)[-1].lower() if ext == '.xml': # self.root = etree.parse(fn) self.prepare_xml() else: with open(fn,'r') as fin: self.text = fin.read() # for line in fin: # if '[START UP TIMING]' in line: # # self.text += '\n%s' % line # self.text += line self.prepare_log() def prepare_xml(self): data = {} _app_init_done_delay = self.app_init_done_delay.split(" ")[-4] _graph_init_done_delay = self.graph_init_done_delay.split(" ")[-4] _render_frame_done_delay = self.render_frame_done_delay.split(" ")[-5] data["_app_init_done_delay"] = _app_init_done_delay data["_graph_init_done_delay"] = _graph_init_done_delay data["_render_frame_done_delay"] = _render_frame_done_delay return data def prepare_log(self): raw = self.text self.app_init_done_delay = '\n'.join( [el for el in raw.split('\n') if 'after appInit @' in el]) self.graph_init_done_delay = '\n'.join( [el for el in raw.split('\n') if 'avm graph init done' in el]) self.render_frame_done_delay = '\n'.join([el for el in raw.split('\n') if 'cc_render_renderFrame num:0' in el]) if name == 'main': line = ['index','LOG_FILE_NAME', 'APP_INIT_DONE_DELAY', 'GRAPH_INIT_DONE_DELAY', 'RENDER_FRAME_DONE_DELAY'] resultFilePath = os.path.join(path, "result_cold_start_time.csv") fout = open(resultFilePath, 'w', newline='') book = csv.writer(fout) book.writerow(line) print(os.path.join(path + '/**/VisualApp.localhost.root.log.ERROR*')) app_init_done_delay = [] graph_init_done_delay = [] render_frame_done_delay = [] for file_name in glob.glob(os.path.join(path + '/**/VisualApp.localhost.root.log.ERROR*')): res = {} index = os.path.dirname(file_name).split("\\")[-1] res['INDEX'] = index res['LOG_FILE_NAME'] = "VisualApp.localhost.root.log.ERROR_" + index st = StartUpTimeAnalysis(file_name) data = st.prepare_xml() res.update(data) app_init_done_delay.append(float(res["_app_init_done_delay"])) graph_init_done_delay.append(float(res["_graph_init_done_delay"])) render_frame_done_delay.append(float(res["_render_frame_done_delay"])) values = res.values() book.writerow(values) DA_MAX = ['', "MAX_VALUE", max(app_init_done_delay), max(graph_init_done_delay), max(render_frame_done_delay)] DA_MIN = ['', "MIN_VALUE", min(app_init_done_delay), min(graph_init_done_delay), min(render_frame_done_delay)] DA_AVG = ['', "AVG_VALUE", sum(app_init_done_delay)/len(app_init_done_delay), sum(graph_init_done_delay)/len(graph_init_done_delay), sum(render_frame_done_delay)/len(render_frame_done_delay)] book.writerow(DA_MAX) book.writerow(DA_MIN) book.writerow(DA_AVG) fout.close() 解释一下每行代码的意思

Epoch 1/10 2023-07-22 21:56:00.836220: W tensorflow/core/framework/op_kernel.cc:1807] OP_REQUIRES failed at cast_op.cc:121 : UNIMPLEMENTED: Cast string to int64 is not supported Traceback (most recent call last): File "d:\AI\1.py", line 37, in <module> model.fit(images, labels, epochs=10, validation_split=0.2) File "D:\AI\env\lib\site-packages\keras\utils\traceback_utils.py", line 70, in error_handler raise e.with_traceback(filtered_tb) from None File "D:\AI\env\lib\site-packages\tensorflow\python\eager\execute.py", line 52, in quick_execute tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name, tensorflow.python.framework.errors_impl.UnimplementedError: Graph execution error: Detected at node 'sparse_categorical_crossentropy/Cast' defined at (most recent call last): File "d:\AI\1.py", line 37, in <module> model.fit(images, labels, epochs=10, validation_split=0.2) File "D:\AI\env\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler return fn(*args, **kwargs) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1685, in fit tmp_logs = self.train_function(iterator) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1284, in train_function return step_function(self, iterator) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1268, in step_function outputs = model.distribute_strategy.run(run_step, args=(data,)) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1249, in run_step outputs = model.train_step(data) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1051, in train_step loss = self.compute_loss(x, y, y_pred, sample_weight) File "D:\AI\env\lib\site-packages\keras\engine\training.py", line 1109, in compute_loss return self.compiled_loss( File "D:\AI\env\lib\site-packages\keras\engine\compile_utils.py", line 265, in __call__ loss_value = loss_obj(y_t, y_p, sample_weight=sw) File "D:\AI\env\lib\site-packages\keras\losses.py", line 142, in __call__ losses = call_fn(y_true, y_pred) File "D:\AI\env\lib\site-packages\keras\losses.py", line 268, in call return ag_fn(y_true, y_pred, **self._fn_kwargs) File "D:\AI\env\lib\site-packages\keras\losses.py", line 2078, in sparse_categorical_crossentropy return backend.sparse_categorical_crossentropy( File "D:\AI\env\lib\site-packages\keras\backend.py", line 5610, in sparse_categorical_crossentropy target = cast(target, "int64") File "D:\AI\env\lib\site-packages\keras\backend.py", line 2304, in cast return tf.cast(x, dtype) Node: 'sparse_categorical_crossentropy/Cast' Cast string to int64 is not supported [[{{node sparse_categorical_crossentropy/Cast}}]] [Op:__inference_train_function_1010]

最新推荐

recommend-type

活垃圾治理-java-基于springBoot的乡村生活垃圾治理问题中运输地图的设计与实现

活垃圾治理-java-基于springBoot的乡村生活垃圾治理问题中运输地图的设计与实现
recommend-type

mmia32.efi

官方centos-7.8.x86_64-EFI-BOOT-mmia32.efi
recommend-type

【液面控制】基于matlab倒锥形水箱液面模糊控制【Matlab仿真 4253期】.zip

CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

NetworkManager-config-server-1.18.4-3.el7.noarch.rpm

Centos7 el7.x86_64 官方离线安装包,安装指令为 sudo rpm -ivh NetworkManager-config-server-1.18.4-3.el7.noarch.rpm
recommend-type

算法-贪婪算法与快速排序ppt视频

适用于编程思维与方法的小组作业讲解,内涵AI优化代码的使用的优缺点,讲解两种算法——贪婪算法、快速排序。
recommend-type

NIST REFPROP问题反馈与解决方案存储库

资源摘要信息:"NIST REFPROP是一个计算流体热力学性质的软件工具,由美国国家标准技术研究院(National Institute of Standards and Technology,简称NIST)开发。REFPROP能够提供精确的热力学和传输性质数据,广泛应用于石油、化工、能源、制冷等行业。它能够处理多种纯组分和混合物的性质计算,并支持多种方程和混合规则。用户在使用REFPROP过程中可能遇到问题,这时可以利用本存储库报告遇到的问题,寻求帮助。需要注意的是,在报告问题前,用户应确保已经查看了REFPROP的常见问题页面,避免提出重复问题。同时,提供具体的问题描述和示例非常重要,因为仅仅说明“不起作用”是不足够的。在报告问题时,不应公开受知识产权保护或版权保护的代码或其他内容。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

gpuR包在R Markdown中的应用:创建动态报告的5大技巧

![ gpuR包在R Markdown中的应用:创建动态报告的5大技巧](https://codingclubuc3m.rbind.io/post/2019-09-24_files/image1.png) # 1. gpuR包简介与安装 ## gpuR包简介 gpuR是一个专为R语言设计的GPU加速包,它充分利用了GPU的强大计算能力,将原本在CPU上运行的计算密集型任务进行加速。这个包支持多种GPU计算框架,包括CUDA和OpenCL,能够处理大规模数据集和复杂算法的快速执行。 ## 安装gpuR包 安装gpuR包是开始使用的第一步,可以通过R包管理器轻松安装: ```r insta
recommend-type

如何利用matrix-nio库,通过Shell脚本和Python编程,在***网络中创建并运行一个机器人?请提供详细的步骤和代码示例。

matrix-nio库是一个强大的Python客户端库,用于与Matrix网络进行交互,它可以帮助开发者实现机器人与***网络的互动功能。为了创建并运行这样的机器人,你需要遵循以下步骤: 参考资源链接:[matrix-nio打造***机器人下载指南](https://wenku.csdn.net/doc/2oa639sw55?spm=1055.2569.3001.10343) 1. 下载并解压《matrix-nio打造***机器人下载指南》资源包。资源包中的核心项目文件夹'tiny-matrix-bot-main'将作为你的工作目录。 2. 通过命令行工具进入'tiny-
recommend-type

掌握LeetCode习题的系统开源答案

资源摘要信息:"LeetCode答案集 - LeetCode习题解答详解" 1. LeetCode平台概述: LeetCode是一个面向计算机编程技能提升的在线平台,它提供了大量的算法和数据结构题库,供编程爱好者和软件工程师练习和提升编程能力。LeetCode习题的答案可以帮助用户更好地理解问题,并且通过比较自己的解法与标准答案来评估自己的编程水平,从而在实际面试中展示更高效的编程技巧。 2. LeetCode习题特点: LeetCode题目设计紧贴企业实际需求,题目难度从简单到困难不等,涵盖了初级算法、数据结构、系统设计等多个方面。通过不同难度级别的题目,LeetCode能够帮助用户全面提高编程和算法设计能力,同时为求职者提供了一个模拟真实面试环境的平台。 3. 系统开源的重要性: 所谓系统开源,指的是一个系统的源代码是可以被公开查看、修改和发布的。开源对于IT行业至关重要,因为它促进了技术的共享和创新,使得开发者能够共同改进软件,同时也使得用户可以自由选择并信任所使用的软件。开源系统的透明性也使得安全审计和漏洞修补更加容易进行。 4. LeetCode习题解答方法: - 初学者应从基础的算法和数据结构题目开始练习,逐步提升解题速度和准确性。 - 在编写代码前,先要分析问题,明确算法的思路和步骤。 - 编写代码时,注重代码的可读性和效率。 - 编写完毕后,测试代码以确保其正确性,同时考虑边界条件和特殊情况。 - 查看LeetCode平台提供的官方解答和讨论区的其他用户解答,学习不同的解题思路。 - 在社区中与他人交流,分享自己的解法,从反馈中学习并改进。 5. LeetCode使用技巧: - 理解题目要求,注意输入输出格式。 - 学习并掌握常见的算法技巧,如动态规划、贪心算法、回溯法等。 - 练习不同类型的题目,增强问题解决的广度和深度。 - 定期回顾和复习已解决的问题,巩固知识点。 - 参加LeetCode的比赛,锻炼在时间压力下的编程能力。 6. 关键标签“系统开源”: - 探索LeetCode的源代码,了解其后端架构和前端界面是如何实现的。 - 了解开源社区如何对LeetCode这样的平台贡献代码,以及如何修复bug和增强功能。 - 学习开源社区中代码共享的文化和最佳实践。 7. 压缩包子文件“leetcode-master”分析: - 该文件可能是一个版本控制工具(如Git)中的一个分支,包含了LeetCode习题答案的代码库。 - 用户可以下载此文件来查看不同用户的习题答案,分析不同解法的差异,从而提升自己的编程水平。 - “master”通常指的是主分支,意味着该分支包含了最新的、可以稳定部署的代码。 8. 使用LeetCode资源的建议: - 将LeetCode作为提升编程能力的工具,定期练习,尤其是对准备技术面试的求职者来说,LeetCode是提升面试技巧的有效工具。 - 分享和讨论自己的解题思路和代码,参与到开源社区中,获取更多的反馈和建议。 - 理解并吸收平台提供的习题答案,将其内化为自己解决问题的能力。 通过上述知识点的详细分析,可以更好地理解LeetCode习题答案的重要性和使用方式,以及在IT行业开源系统中获取资源和提升技能的方法。