openmv如何识别色块
时间: 2023-10-25 18:11:02 浏览: 129
OpenMV可以通过使用颜色追踪器模块来识别颜色块。以下是基本步骤:
1. 选择要追踪的颜色。使用 `color_tracker.ColorTracker()` 函数创建一个颜色追踪器对象,并使用 `add_color()` 函数添加要追踪的颜色。
```python
import sensor, image, time
from pyb import LED
import color_blob_tracker as cbt
# 初始化摄像头
sensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)
# 初始化LED灯
led = LED(1)
# 创建颜色追踪器对象
color_tracker = cbt.ColorTracker()
# 添加要追踪的颜色
color_tracker.add_color((30, 100, 50, 70, 0, 70), "red")
# 循环追踪颜色块
while(True):
# 获取图像
img = sensor.snapshot()
# 追踪颜色块
blobs = color_tracker.track(img)
# 显示追踪结果
for blob in blobs:
img.draw_rectangle(blob.rect())
img.draw_cross(blob.cx(), blob.cy())
# 点亮LED灯
if blobs:
led.on()
else:
led.off()
```
2. 在图像中查找颜色块。在获取图像后,使用 `find_blobs()` 函数查找颜色块。该函数会返回一个包含颜色块信息的列表。
```python
blobs = img.find_blobs([threshold], pixels_threshold=200, area_threshold=200, merge=True)
```
其中,`threshold` 是颜色阈值,`pixels_threshold` 是像素阈值,`area_threshold` 是面积阈值,`merge` 决定是否合并相邻的颜色块。
3. 显示颜色块。使用 `draw_rectangle()` 和 `draw_cross()` 函数在图像上显示颜色块的位置和大小。
```python
for blob in blobs:
img.draw_rectangle(blob.rect())
img.draw_cross(blob.cx(), blob.cy())
```
4. 对颜色块进行处理。根据应用场景,可以对颜色块进行进一步的处理,如计算颜色块的中心位置、角度、面积等。
参考资料:https://docs.openmv.io/library/omv.image.html#image.Image.find_blobs
阅读全文