C_Clk <= 1; data_tmp[2] <= ADC_Din;end 346 : ADC_Clk <= 0; 371 : begin ADC_Clk <= 1; data_tmp[1] <= ADC_Din;end 396 : ADC_Clk <= 0; 421 : begin ADC_Clk <= 1; data_tmp[0] <= ADC_Din;end 446 : begin ADC_Clk <= 0; ADC_Cs_n <= 1'b1; Get_Flag<=1;end 447 : begin Data <= data_tmp; Get_Flag<=0; end //447~1310(Twh) 1310: ; default:; endcase end else begin ADC_Cs_n <= 1'b1; ADC_Clk <= 1'b0; end end endmodule这段代码的意思

时间: 2024-03-05 09:51:17 浏览: 23
这段代码是一个Verilog模块的描述,它实现了一个模拟数字转换器(ADC)的功能。具体解释如下: ``` module ADC_module( input Clk, // 时钟信号 input Rst_n, // 复位信号 input En, // 使能信号 input [7:0]ADC_Din, // ADC输入数据 input ADC_Cs_n, // ADC片选信号 output reg [7:0]Data,// 输出数据 output reg Get_Flag // 输出完成信号 ); reg [7:0]data_tmp [0:2]; // 数据暂存寄存器 reg [1:0]state = 2'b00; // 状态机状态变量 always @(posedge Clk or negedge Rst_n) begin if (!Rst_n) begin ADC_Cs_n <= 1'b1; ADC_Clk <= 1'b0; state <= 2'b00; data_tmp <= 8'b0; Get_Flag <= 1'b0; Data <= 8'b0; end else begin if (En) begin case (state) 2'b00: begin // 状态0 ADC_Cs_n <= 1'b0; state <= 2'b01; end 2'b01: begin // 状态1 ADC_Clk <= 1'b1; data_tmp[2] <= ADC_Din; state <= 2'b10; end 2'b10: begin // 状态2 ADC_Clk <= 0; state <= 2'b11; end 2'b11: begin // 状态3 ADC_Clk <= 1; data_tmp[1] <= ADC_Din; state <= 2'b00; end endcase Data <= data_tmp; Get_Flag <= 0; end else begin ADC_Cs_n <= 1'b1; ADC_Clk <= 1'b0; end end end endmodule ``` - input Clk, input Rst_n, input En, input [7:0]ADC_Din, input ADC_Cs_n, output reg [7:0]Data, output reg Get_Flag 定义了模块的输入输出端口,其中Clk是时钟信号,Rst_n是复位信号,En是使能信号,ADC_Din是ADC输入数据,ADC_Cs_n是ADC片选信号,Data是输出数据,Get_Flag是输出完成信号。 - reg [7:0]data_tmp [0:2] 定义了一个长度为3的数据暂存寄存器,用于存储ADC采样的数据。 - reg [1:0]state = 2'b00 定义了一个长度为2的状态机状态变量,用于控制ADC采样过程的状态。 - always @(posedge Clk or negedge Rst_n) begin 表示一个时序逻辑块,当时钟上升沿或复位信号下降沿时执行。 - if (!Rst_n) begin ... end else begin ... end 表示复位信号为低电平时执行清零操作,否则执行ADC采样过程。 - if (En) begin ... end else begin ... end 表示使能信号为高电平时执行ADC采样过程,否则停止采样。 - case (state) ... endcase 表示状态机控制逻辑。当state等于2'b00、2'b01、2'b10、2'b11时分别执行不同的采样操作。 - Data <= data_tmp; Get_Flag <= 0; 表示采样完成后,将采样数据输出,并将完成信号置为0。 - ADC_Cs_n、ADC_Clk分别表示控制ADC片选和时钟的信号线。ADC_Din是ADC输入数据,用于保存ADC转换后的数据。

相关推荐

讲下面代码分部分讲解//数码管显示 module seg_driver( input clk , input rst_n , input [31:0]data,//待显示的数据 output wire[7:0] sel , output wire[7:0] seg ); //wire [31:0]data; // assign dig_seg = 8'd0; // assign dig_sel = 1'b0; reg [7:0] dig_sel; reg [7:0] dig_seg; localparam NUM_0 = 8'hC0, NUM_1 = 8'hF9, NUM_2 = 8'hA4, NUM_3 = 8'hB0, NUM_4 = 8'h99, NUM_5 = 8'h92, NUM_6 = 8'h82, NUM_7 = 8'hF8, NUM_8 = 8'h80, NUM_9 = 8'h90, NUM_A = 8'h88, NUM_B = 8'h83, NUM_C = 8'hC6, NUM_D = 8'hA1, NUM_E = 8'h86, NUM_F = 8'h8E, LIT_ALL = 8'h00, BLC_ALL = 8'hFF; parameter CNT_REF = 25'd1000; reg [9:0] cnt_20us; //20us计数器 reg [3:0] data_tmp; //用于取出不同位选的显示数据 // assign data = 32'hABCD_4413; //描述位选信号切换 //描述刷新计数器 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin cnt_20us <= 25'd0; end else if(cnt_20us >= CNT_REF - 25'd1)begin cnt_20us <= 25'd0; end else begin cnt_20us <= cnt_20us + 25'd1; end end always@(posedge clk or negedge rst_n)begin if(!rst_n)begin dig_sel <= 8'hfe;//8'b1111_1110 end else if(cnt_20us >= CNT_REF - 25'd1)begin dig_sel <= {dig_sel[6:0],dig_sel[7]}; end else begin dig_sel <= dig_sel; end end assign sel = dig_sel; //段选信号描述 always@(posedge clk or negedge rst_n)begin if(!rst_n)begin data_tmp <= 4'd0; end else begin case(sel) 8'b1111_1110:data_tmp <= data[ 3-:4]; 8'b1111_1101:data_tmp <= data[ 7-:4]; 8'b1111_1011:data_tmp <= data[11-:4]; 8'b1111_0111:data_tmp <= data[15-:4]; 8'b1110_1111:data_tmp <= data[19-:4]; 8'b1101_1111:data_tmp <= data[23-:4]; 8'b1011_1111:data_tmp <= data[27-:4]; 8'b0111_1111:data_tmp <= data[31-:4]; default: data_tmp <= 4'hF; endcase end end always@(posedge clk or negedge rst_n)begin if(!rst_n)begin dig_seg <= BLC_ALL; end else begin case(data_tmp) 4'h0 : dig_seg <= NUM_0; 4'h1 : dig_seg <= NUM_1; 4'h2 : dig_seg <= NUM_2; 4'h3 : dig_seg <= NUM_3; 4'h4 : dig_seg <= NUM_4; 4'h5 : dig_seg <= NUM_5; 4'h6 : dig_seg <= NUM_6; 4'h7 : dig_seg <= NUM_7; 4'h8 : dig_seg <= NUM_8; 4'h9 : dig_seg <= NUM_9; 4'hA : dig_seg <= NUM_A; 4'hB : dig_seg <= NUM_B; 4'hC : dig_seg <= NUM_C; 4'hD : dig_seg <= NUM_D; 4'hE : dig_seg <= NUM_E; 4'hF : dig_seg <= NUM_F; default: ; endcase end end assign seg = dig_seg ; endmodule

问题在哪?always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin bps_start_r <= 1'bz;//波特率时钟启动信号 tx_en <= 1'b0; tx_data <= 1'b0; count <= 1'b0; end else if(start) begin //接收数据完毕,准备把接收到的数据发回去 bps_start_r <= 1'b1;//波特率时钟状态为1 case(count) 1'b00:begin tx_data <= data[2'd0]; count <= 1'b01; end 1'b01:begin tx_data <= data[2'd1]; count <= 1'b10; end 1'b10:begin//不做这个? tx_data <= data[2'd2]; count <= 1'b00; end default:count <= 1'b00; endcase tx_en <= 1'b1; //进入发送数据状态中 end else if(num==8'd11) begin //数据发送完成,复位 bps_start_r <= 1'b0; tx_en <= 1'b0; end end assign bps_start = bps_start_r; //--------------------------------------------------------- reg rs232_tx_r; always @ (posedge clk or negedge rst_n) begin if(!rst_n) begin num <= 8'd0; rs232_tx_r <= 1'b1; end else if(tx_en)//发送数据使能信号 begin if(clk_bps) begin num <= num+1'b1; case (num) 8'd0: rs232_tx_r <= 1'b0; //发送起始位 8'd1: rs232_tx_r <= tx_data[0] ; //发送第0bit 8'd2: rs232_tx_r <= tx_data[1] ; //发送第1bit 8'd3: rs232_tx_r <= tx_data[2] ; //发送第2bit 8'd4: rs232_tx_r <= tx_data[3] ; //发送第3bit 8'd5: rs232_tx_r <= tx_data[4] ; //发送第4bit 8'd6: rs232_tx_r <= tx_data[5] ; //发送第5bit 8'd7: rs232_tx_r <= tx_data[6] ; //发送第6bit 8'd8: rs232_tx_r <= tx_data[7] ; //发送第7bit 8'd9: rs232_tx_r <= 1'b1; //发送结束位 default: rs232_tx_r <= 1'b1; endcase end else if(num==8'd11) num <= 8'd0; //复位 end end assign rs232_tx = rs232_tx_r;

module race_game ( input clk , input rst , input [3:0]key , output [6:0]seg_led_1 , output [6:0]seg_led_2 , ); reg clk_divided; reg [6:0] seg[9:0]; reg [23:0] cnt; integer k; localparam PERIOD = 12000000; // 12MHz时钟信号的周期数 always @(posedge clk) begin if (!rst) begin cnt <= 0; clk_divided <= 0; end else begin if (cnt >= PERIOD-1) begin cnt <= 0; clk_divided <= ~clk_divided; end else begin cnt <= cnt + 1; end end end initial begin seg[0] = 7'h3f; // 0 seg[1] = 7'h06; // 1 seg[2] = 7'h5b; // 2 seg[3] = 7'h4f; // 3 seg[4] = 7'h66; // 4 seg[5] = 7'h6d; // 5 seg[6] = 7'h7d; // 6 seg[7] = 7'h07; // 7 seg[8] = 7'h7f; // 8 seg[9] = 7'h6f; // 9 end always @ (posedge clk_divided) begin if(!rst) begin for(k=10;k>0;k=k-1) begin case(k) 1'd0:begin seg_led_1<=seg[0];seg_led_2<=seg[0]; end 1'd1:begin seg_led_1<=seg[0];seg_led_2<=seg[1]; end 1'd2:begin seg_led_1<=seg[0];seg_led_2<=seg[2]; end 1'd3:begin seg_led_1<=seg[0];seg_led_2<=seg[3]; end 1'd4:begin seg_led_1<=seg[0];seg_led_2<=seg[4]; end 1'd5:begin seg_led_1<=seg[0];seg_led_2<=seg[5]; end 1'd6:begin seg_led_1<=seg[0];seg_led_2<=seg[6]; end 1'd7:begin seg_led_1<=seg[0];seg_led_2<=seg[7]; end 1'd8:begin seg_led_1<=seg[0];seg_led_2<=seg[8]; end 1'd9:begin seg_led_1<=seg[0];seg_led_2<=seg[9]; end 1'd10:begin seg_led_1<=seg[1];seg_led_2<=seg[0]; end endcase end seg_led_1<=seg[0]; seg_led_2<=seg[0]; end end always @ (posedge clk) begin if(!rst)begin if(k == 0) case(key) 4'd1:begin seg_led_1<=seg[0];seg_led_2<=seg[1]; end 4'd2:begin seg_led_1<=seg[0];seg_led_2<=seg[2]; end 4'd4:begin seg_led_1<=seg[0];seg_led_2<=seg[3]; end 4'd8:begin seg_led_1<=seg[0];seg_led_2<=seg[4]; end endcase end end endmodule 帮我检查一下这段代码的错误

最新推荐

recommend-type

基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip

基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip基于Android Studio的个人记账应用帮助用户轻松管理和跟踪他们的财务源码.zip
recommend-type

基于python实现树莓派和传感器的植物生长环境评估信息系统

【作品名称】:基于python实现树莓派和传感器的植物生长环境评估信息系统 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于python实现树莓派和传感器的植物生长环境评估信息系统
recommend-type

优质资源,Yearning Mysql SQL审核平台

Yearning Mysql SQL审核平台(使用go语言)
recommend-type

c语言课程设计-职工资源管理系统.rar

void displayMenu() { printf("\n+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n"); printf("+ 职工资源管理系统 +\n"); printf("+ +\n"); printf("+ 1. 录入职工信息 +\n"); printf("+ 2. 显示全部职工信息 +\n"); printf("+ 3. 根据工号查询
recommend-type

华为OD机试D卷 - 来自异国的客人 - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用 Python 画一个可以动的爱心

好的,我可以帮助您使用Python来绘制一个动态的爱心。您可以使用turtle库来实现。以下是实现代码: ```python import turtle import math # 设置画布和画笔 canvas = turtle.Screen() canvas.bgcolor("black") pencil = turtle.Turtle() pencil.speed(0) pencil.color("red", "pink") pencil.pensize(3) # 定义爱心函数 def draw_love(heart_size, x_offset=0, y_offset=0):
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。