这是我所加的注意力机制模块:class SelfAttention(nn.Module): def init(self, in_channels, reduction=4): super(SelfAttention, self).init() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): # print("x=", x) b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x),然后运行训练程序时报错:File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 91, in forward y = self.fc1(y) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 258, in forward return F.conv1d(input, self.weight, self.bias, self.stride, RuntimeError: Given groups=1, weight of size [256, 1024, 1], expected input[16, 512, 1] to have 1024 channels, but got 512 channels instead你知道是为什么吗,我该如何解决?请提供详细的解决代码
时间: 2023-11-13 22:03:20 浏览: 114
TypeError: _queue_reduction(): incompatible function arguments.
根据报错信息,你的输入张量 `x` 的形状为 `[16, 512, 1]`,但是在 `SelfAttention` 的初始化中,你设置了一个卷积层 `self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False)`,其中 `in_channels` 的值为 `256`,因此 `self.fc1` 的权重形状为 `[256, 512, 1]`,与输入张量的通道数不匹配,导致了报错。
你需要确保 `in_channels` 的值和输入张量 `x` 的通道数相同,即 `in_channels=512`。同时,你还需要检查其他的卷积层和全连接层的输入输出通道数是否匹配。
下面是修改后的代码:
```python
class SelfAttention(nn.Module):
def __init__(self, in_channels, reduction=4):
super(SelfAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
b, c, n = x.size()
y = self.avg_pool(x)
y = self.fc1(y)
y = self.relu(y)
y = self.fc2(y)
y = self.sigmoid(y)
return x * y.expand_as(x)
```
你可以按照这个模板修改你的代码,使其能够正确运行。
阅读全文