assert not bias
时间: 2023-10-27 20:33:21 浏览: 71
As an AI language model, I am designed to be unbiased and neutral in my responses. I do not have personal opinions, feelings, or experiences that could influence my answers. My responses are based on the input provided to me and the data available. However, it is important to note that bias can exist in the data that I am trained on or the way the input is framed, and it is important to be aware of this potential bias and address it accordingly.
相关问题
class BCNN(nn.Module): def __init__(self): nn.Module.__init__(self) self.features = torchvision.models.vgg16(pretrained = True).features self.features = nn.Sequential(*list(self.features.children())[:-1]) self.fc = nn.Linear(512 ** 2, 200) for param in self.feature.parameters(): param.requires_grad = True nn.init.kaiming_normal_(self.fc.weight.data) if self.fc.bias is not None: nn.init.constant_(self.fc.bias.data, val = 0) def forward(self, x): N = x.size()[0] assert x.size() == (N, 3, 448, 448) x = self.features(x) assert x.size() == (N, 512, 28, 28) x = x.view(N, 512, 28 ** 2) x = torch.bmm(x, torch.transpose(x, 1, 2)) / (28 ** 2) assert x.size() ==(N, 512, 512) x = x.view(N, 512 ** 2) x = torch.sqrt(x + 1e-5) x = nn.functional.normalize(x) x = self.fc(x) assert x.size() == (N, 200) return x啥意思
这是一个 PyTorch 模型定义,定义了一个叫做 BCNN 的类,继承自 nn.Module。该模型使用了预训练的 VGG16 网络,去除了最后一层全连接层,将其余层保存在 self.features 中。接着定义了一个全连接层 self.fc,输入为 512x512,输出为 200。在前向传递中,输入数据 x 经过 self.features 后,先将其 reshape 成 N x 512 x (28^2),然后进行矩阵乘法,得到 N x 512 x 512 的输出,接着对输出进行开根号和 L2 归一化处理,最后送入全连接层得到输出。整个模型的作用是将输入图像映射到一个 200 维的向量表示。
class TemporalBlock(nn.Module): """ Temporal block with the following layers: - 2x3x3, 1x3x3, spatio-temporal pyramid pooling - dropout - skip connection. """ def __init__(self, in_channels, out_channels=None, use_pyramid_pooling=False, pool_sizes=None): super().__init__() self.in_channels = in_channels self.half_channels = in_channels // 2 self.out_channels = out_channels or self.in_channels self.kernels = [(2, 3, 3), (1, 3, 3)] # Flag for spatio-temporal pyramid pooling self.use_pyramid_pooling = use_pyramid_pooling # 3 convolution paths: 2x3x3, 1x3x3, 1x1x1 self.convolution_paths = [] for kernel_size in self.kernels: self.convolution_paths.append( nn.Sequential( conv_1x1x1_norm_activated(self.in_channels, self.half_channels), CausalConv3d(self.half_channels, self.half_channels, kernel_size=kernel_size), ) ) self.convolution_paths.append(conv_1x1x1_norm_activated(self.in_channels, self.half_channels)) self.convolution_paths = nn.ModuleList(self.convolution_paths) agg_in_channels = len(self.convolution_paths) * self.half_channels if self.use_pyramid_pooling: assert pool_sizes is not None, "setting must contain the list of kernel_size, but is None." reduction_channels = self.in_channels // 3 self.pyramid_pooling = PyramidSpatioTemporalPooling(self.in_channels, reduction_channels, pool_sizes) agg_in_channels += len(pool_sizes) * reduction_channels # Feature aggregation self.aggregation = nn.Sequential( conv_1x1x1_norm_activated(agg_in_channels, self.out_channels),) if self.out_channels != self.in_channels: self.projection = nn.Sequential( nn.Conv3d(self.in_channels, self.out_channels, kernel_size=1, bias=False), nn.BatchNorm3d(self.out_channels), ) else: self.projection = None网络结构是什么?
这段代码实现了一个名为 TemporalBlock 的神经网络模块,该模块包括以下层:
- 3 个卷积路径: 2x3x3 卷积、1x3x3 卷积和 1x1x1 卷积
- dropout 层
- skip 连接
- 可选的 spatio-temporal pyramid pooling 层
- 最后是特征聚合和投影层(如果输入和输出通道数不同)
其中,卷积路径通过 nn.Sequential 和 nn.ModuleList 封装,方便调用和管理。
TemporalBlock 的输入通道数为 in_channels,输出通道数为 out_channels(如果未指定,则默认与输入通道数相同),通过 kernels 参数定义了 3 个卷积核的大小,其中前两个卷积路径使用 2x3x3 和 1x3x3 卷积核,第三个卷积路径使用 1x1x1 卷积核。
如果 use_pyramid_pooling 参数为 True,则会添加一个 spatio-temporal pyramid pooling 层,对输入进行空间和时间维度的金字塔池化,提取多尺度特征,其中 pool_sizes 参数指定了池化核的大小。
最后,特征聚合层将多个路径的特征拼接起来,通过 1x1x1 卷积将通道数调整为 out_channels,如果输入和输出通道数不同,则添加一个投影层进行通道数的调整。
阅读全文