self.state_size = state_size self.action_size = action_size self.BUFFER_SIZE = BUFFER_SIZE self.BATCH_SIZE = BATCH_SIZE self.per = per self.munchausen = munchausen self.n_step = n_step self.distributional = distributional self.D2RL = D2RL self.curiosity = curiosity[0] self.reward_addon = curiosity[1] self.GAMMA = GAMMA self.TAU = TAU self.LEARN_EVERY = LEARN_EVERY self.LEARN_NUMBER = LEARN_NUMBER self.EPSILON_DECAY = EPSILON_DECAY self.device = device self.seed = random.seed(random_seed) # distributional Values self.N = 32 self.entropy_coeff = 0.001 # munchausen values self.entropy_tau = 0.03 self.lo = -1 self.alpha = 0.9 self.eta = torch.FloatTensor([.1]).to(device) print("Using: ", device)
时间: 2023-12-06 08:43:40 浏览: 169
这段代码看起来像是在初始化一个 RL(强化学习)算法的参数设置。其中,state_size 表示状态空间的大小,action_size 表示动作空间的大小,BUFFER_SIZE 和 BATCH_SIZE 分别表示经验池的大小和每次学习的数据量,per 表示是否使用优先经验回放,munchausen 表示是否使用 Munchausen RL 算法,n_step 表示使用 n-step TD 学习的步数,distributional 表示是否使用分布式 DQN 算法,D2RL 表示是否使用 D2RL 算法,curiosity 表示是否使用探索奖励机制,reward_addon 表示探索奖励的大小,GAMMA 表示折扣因子,TAU 表示目标网络更新参数的速度,LEARN_EVERY 和 LEARN_NUMBER 分别表示学习的频率和学习次数,EPSILON_DECAY 表示 epsilon 贪心策略的衰减速度,device 表示使用的计算设备,seed 表示随机数生成器的种子。
其中,N 表示分布式 DQN 算法中分布的数量,entropy_coeff 表示分布式 DQN 算法中的熵系数,entropy_tau 表示 Munchausen RL 算法中的熵系数,lo 表示 Munchausen RL 算法中的较小的负数,alpha 表示 Munchausen RL 算法中的一个参数,eta 表示 Munchausen RL 算法中的一个常数。
相关问题
class DDPGAgent: def __init__(self, state_dim, action_dim, gamma=0.99, tau=0.01, lr_actor=1e-3, lr_critic=1e-3, memory_size=int(1e6), batch_size=128, warmup_steps=1000, noise_std=0.2, noise_min=0., hidden_size=128, num_layers=2): self.state_dim = state_dim self.action_dim = action_dim self.gamma = gamma self.tau = tau self.lr_actor = lr_actor self.lr_critic = lr_critic self.batch_size = batch_size self.steps = 50 self.warmup_steps = warmup_steps self.noise_std = noise_std self.noise_min = noise_min # 创建memory buffer用于存储经验回放记录 self.memory_buffer = deque(maxlen=memory_size) # 定义actor模型和target模型 self.actor = RnnModel(input_size=state_dim, hidden_size=hidden_size, num_layers=num_layers, output_size=action_dim).cuda() self.target_actor = RnnModel(input_size=state_dim, hidden_size=hidden_size, num_layers=num_layers, output_size=action_dim).cuda() self.target_actor.load_state_dict(self.actor.state_dict()) # 定义critic模型和target模型 self.critic = CriticNetwork(state_dim, action_dim) self.target_critic = CriticNetwork(state_dim, action_dim) self.target_critic.load_state_dict(self.critic.state_dict())
这是一个DDPG智能体的初始化函数,它有许多参数可以设置,包括状态空间、动作空间维度、强化学习的折扣因子、目标网络和实际网络之间的软更新率、演员网络和评论家网络的学习率、记忆库的大小、批量大小、热身步数、噪声的标准差、噪声的最小值、隐藏层的大小和层数等等。这些参数可以用来优化DDPG的性能。
def update(self, batch_size): if len(self.buffer) < batch_size: return self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay) state, action, reward, next_state, done = self.buffer.sample(batch_size) state = torch.FloatTensor(state)[..., :-1] action = torch.LongTensor(action) reward = torch.FloatTensor(reward) done = torch.FloatTensor(done) next_state = torch.FloatTensor(next_state)[..., :-1] q_values = self.network(state) next_q_values = self.target_network(next_state) q_value = q_values.gather(1, action.unsqueeze(1)).squeeze(1) next_q_value = next_q_values.max(1)[0] expected_q_value = reward + self.gamma * next_q_value * (1 - done) loss = self.criteria(q_value, expected_q_value.detach()) self.optimizer.zero_grad() loss.backward() self.optimizer.step()
你的第二个问题是关于一个更新函数。这个函数用于更新深度强化学习模型的参数。
首先,函数检查经验缓存(buffer)中的样本数量是否小于批次大小(batch_size),如果是,则直接返回。接下来,函数根据epsilon的最小值和衰减率更新epsilon的值。
然后,函数从经验缓存中随机采样出一个批次的样本,包括状态(state),动作(action),奖励(reward),下一个状态(next_state)和完成标志(done)。
接着,函数将状态和下一个状态转换为张量,并且去除最后一个元素。
然后,函数通过当前网络(network)计算当前状态对应的Q值(q_values),并通过目标网络(target_network)计算下一个状态对应的Q值(next_q_values)。
接下来,函数根据当前状态的Q值和动作,选择对应的Q值(q_value)。
然后,函数计算下一个状态的最大Q值(next_q_value)。
接着,函数根据奖励、折扣因子(gamma)、下一状态的最大Q值和完成标志(done),计算期望Q值(expected_q_value)。
然后,函数计算损失(loss),通过均方差损失函数(criteria)和期望Q值的离散程度进行计算。接着,函数将优化器(optimizer)的梯度置零,进行反向传播计算梯度,并更新模型的参数。
这样,模型的参数就得到了更新。
阅读全文