深度学习的qam解调器设计代码
时间: 2024-02-06 19:03:20 浏览: 145
以下是一个简单的基于深度学习的QAM解调器设计代码示例,使用Python和Keras库进行实现:
```python
import numpy as np
import keras
# 生成QAM调制信号
def generate_qam_signal(M=16, N=10000):
bits_per_symbol = int(np.log2(M))
bits = np.random.randint(low=0, high=2, size=N*bits_per_symbol)
symbols = np.zeros(N, dtype=np.complex)
for i in range(N):
symbol_bits = bits[i*bits_per_symbol:(i+1)*bits_per_symbol]
symbol_index = int(''.join([str(b) for b in symbol_bits]), 2)
symbols[i] = np.exp(1j*(2*np.pi/M)*(symbol_index))
return symbols
# 添加噪声
def add_noise(symbols, SNR_dB):
signal_power = np.mean(np.abs(symbols)**2)
noise_power = signal_power/(10**(SNR_dB/10))
noise = np.sqrt(noise_power/2)*(np.random.randn(symbols.shape[0]) + 1j*np.random.randn(symbols.shape[0]))
return symbols + noise
# 生成训练数据
def generate_train_data(M=16, SNR_dB=20, N=10000):
symbols = generate_qam_signal(M, N)
noisy_symbols = add_noise(symbols, SNR_dB)
input_data = np.concatenate((np.real(noisy_symbols)[:, np.newaxis], np.imag(noisy_symbols)[:, np.newaxis]), axis=1)
output_data = keras.utils.to_categorical(np.arange(M)[np.newaxis, :] * np.ones((N, 1)), M)
return input_data, output_data
# 构建模型
def build_model(input_shape, num_classes):
model = keras.models.Sequential()
model.add(keras.layers.Dense(64, activation='relu', input_shape=input_shape))
model.add(keras.layers.Dense(64, activation='relu'))
model.add(keras.layers.Dense(num_classes, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# 训练模型
def train_model(model, input_data, output_data, batch_size=128, epochs=10, validation_split=0.1):
model.fit(input_data, output_data, batch_size=batch_size, epochs=epochs, validation_split=validation_split)
# 测试模型
def test_model(model, M=16, SNR_dB=20, N=10000):
symbols = generate_qam_signal(M, N)
noisy_symbols = add_noise(symbols, SNR_dB)
input_data = np.concatenate((np.real(noisy_symbols)[:, np.newaxis], np.imag(noisy_symbols)[:, np.newaxis]), axis=1)
output_data = keras.utils.to_categorical(np.arange(M)[np.newaxis, :] * np.ones((N, 1)), M)
loss, accuracy = model.evaluate(input_data, output_data)
print('Test loss:', loss)
print('Test accuracy:', accuracy)
# 使用示例
M = 16
SNR_dB = 20
N_train = 10000
N_test = 1000
input_shape = (2,)
num_classes = M
input_data, output_data = generate_train_data(M, SNR_dB, N_train)
model = build_model(input_shape, num_classes)
train_model(model, input_data, output_data, batch_size=128, epochs=10, validation_split=0.1)
test_model(model, M, SNR_dB, N_test)
```
该代码生成了一个具有两个ReLU层和一个Softmax输出层的简单神经网络模型,用于识别16-QAM调制信号。它使用随机生成的训练数据进行训练,并在测试数据上进行测试。在测试数据上的准确性可以作为模型的性能指标。
阅读全文