生成关键词的词云图用jieba.analyse.textrank还是jieba.analyse.extract_tags
时间: 2023-11-17 22:07:12 浏览: 101
生成关键词的词云图时,可以使用jieba.analyse.extract_tags方法进行关键词提取。因为词云图需要展示的是文本中出现频率较高的关键词,而jieba.analyse.extract_tags方法是根据词频和文档频率计算关键词的重要性,可以很好地满足这个需求。
jieba.analyse.textrank方法虽然也可以用于关键词提取,但它计算的是节点之间的共现关系,更适合用于提取文本中比较重要的关键词。而在词云图中,我们更关注的是出现频率较高的关键词,因此jieba.analyse.extract_tags更适合用于生成关键词的词云图。
相关问题
jieba.analyse.extract_tags 和 jieba.analyse.textrank区别
jieba.analyse.extract_tags和jieba.analyse.textrank都是jieba库中的关键词提取方法,但它们的算法和使用场景有所不同。
jieba.analyse.extract_tags是基于TF-IDF算法的关键词提取方法,它根据词频和文档频率计算关键词的重要性。它可以设置topK参数来限制返回的关键词数量,并且可以指定使用停用词列表和指定词性的词语进行提取。
jieba.analyse.textrank是基于PageRank算法的关键词提取方法,它将文本中的词语看作是节点,根据它们之间的共现关系构建图,利用PageRank算法进行计算,得出关键词的重要性。它可以设置topK参数来限制返回的关键词数量,并且可以指定使用停用词列表和指定词性的词语进行提取。
总的来说,如果要提取一篇文档中的关键词,可以先使用jieba.analyse.extract_tags进行初步提取,再使用jieba.analyse.textrank进行筛选和排序,以得到更加准确的关键词。但是如果要处理的文本比较长,比如一篇长篇小说或者一篇新闻报道,建议直接使用jieba.analyse.textrank进行关键词提取,因为它能够充分利用文本中的信息,得到更加准确的关键词。
text_analysis = jieba.analyse.extract_tags(keywordss,topK = 100, withWeight=True) for texts in abstracts: if texts == text_analysis: abstract_analysis = jieba.analyse.extract_tags(abstracts,topK=30,withWeight=True)
根据你提供的代码,你想使用`jieba.analyse.extract_tags()`函数从关键词列表中提取关键词,并用这些关键词来匹配摘要列表中的文本。如果匹配成功,则提取该摘要的关键词。
然而,根据你的代码,存在一些问题。首先,在`if texts == text_analysis`这行代码中,你将`texts`与`text_analysis`进行了相等性比较,这是不正确的。`text_analysis`是一个包含关键词和权重的列表,而`texts`是从摘要列表中提取出来的文本。你应该使用`in`运算符来判断一个文本是否包含在关键词列表中。
另外,在第二个`jieba.analyse.extract_tags()`函数中,你传递的是整个摘要列表`abstracts`,而不是单个摘要文本。如果你想提取每个摘要的关键词,应该遍历摘要列表,并将每个摘要文本作为参数传递给函数。
以下是修改后的示例代码:
```python
import jieba.analyse
keywordss = "关键词列表" # 假设这是你的关键词列表
abstracts = ["摘要1", "摘要2", "摘要3"] # 假设这是你的摘要列表
text_analysis = jieba.analyse.extract_tags(keywordss, topK=100, withWeight=True)
for text in abstracts:
for keyword, weight in text_analysis:
if keyword in text:
abstract_analysis = jieba.analyse.extract_tags(text, topK=30, withWeight=True)
print(abstract_analysis)
break
```
在这个修改后的代码中,我们首先定义了一个关键词列表`keywordss`和一个摘要列表`abstracts`,你需要根据实际情况进行修改。
然后,我们使用`jieba.analyse.extract_tags()`函数从关键词列表中提取关键词,并将结果保存在`text_analysis`变量中。
接下来,我们遍历摘要列表`abstracts`,并对于每个摘要文本`text`,遍历关键词列表`text_analysis`。如果关键词存在于摘要文本中,则使用`jieba.analyse.extract_tags()`函数提取该摘要的关键词,并将结果保存在`abstract_analysis`变量中。
请根据你的具体需求修改代码中的关键词列表和摘要列表,并确保已正确导入`jieba.analyse`模块。如果还有其他问题,请提供更多细节,我将尽力帮助你。
阅读全文