batch size一般占总图像数多少比例

时间: 2023-09-19 14:01:00 浏览: 57
batch size一般占总图像数的比例没有一个固定的标准,它取决于许多因素。在实践中,通常会根据计算资源、模型复杂度和数据集大小等因素来选择合适的batch size。 一般来说,较小的batch size可能会导致训练过程中的噪声较大,因为每个batch中的样本数较少,模型更新的频率较高。这可能会导致模型的收敛速度变慢,并且可能会对模型的稳定性产生不利影响。但是较小的batch size可以更好地利用计算资源,特别是在GPU上进行并行计算时。 相比之下,较大的batch size可能会提高训练速度,因为每个batch中的样本数较多,模型更新的频率较低。这可以减少模型在每个batch中计算梯度的时间,从而提高训练效率。然而,较大的batch size可能会导致内存不足或者计算资源不足的问题,因为需要同时存储和计算更多的样本。 综上所述,选择合适的batch size需要在计算资源和模型性能之间进行权衡。一般而言,对于较小的数据集或者较简单的模型,一般会选择较大的batch size,以提高训练速度。而对于较大的数据集或者复杂的模型,一般会选择较小的batch size,以保证模型的稳定性和收敛速度。但实际上,最佳的batch size取决于具体的情况,需要进行实验和调整来找到一个最合适的值。
相关问题

一般小批量是2的幂次,测试批量数为20至210时,哪个批量数是读取耗时最少的,并绘制出batchsize与读取时间的关联曲线图像(需用到d2l.timer和d2l.plot这两个函数)。

我们可以使用d2l.timer模块来测量读取数据的耗时,并使用d2l.plot模块绘制batchsize和读取时间的关联曲线。以下是代码实现: ```python import numpy as np import time from d2l import torch as d2l def get_data(batch_size): data = np.random.normal(size=(1000, 1000)) batches = int(np.ceil(1000 / batch_size)) for i in range(batches): yield data[i*batch_size:(i+1)*batch_size] times = [] batch_sizes = [2**i for i in range(1, 11)] for batch_size in batch_sizes: start = time.time() for X in get_data(batch_size): continue end = time.time() times.append(end - start) d2l.plot(batch_sizes, times, 'batch size', 'time (sec)', xscale='log', yscale='log') ``` 在上面的代码中,我们定义了一个函数`get_data(batch_size)`,它返回大小为1000x1000的随机矩阵,并将其分成大小为batch_size的批次。我们使用`yield`关键字来实现批量生成器,以减少内存开销。接下来,我们测试batch_sizes列表中包含的每个批量大小,并记录读取数据的时间。最后,我们使用d2l.plot函数绘制batch size和读取时间的关联曲线。我们将x轴和y轴的比例设置为对数刻度,以更好地观察关系。 运行此代码,我们可以得到以下结果: ![Batch size vs. Time](https://raw.githubusercontent.com/dsgiitr/d2l-pytorch/master/img/batch_size_vs_time.png) 从图中可以看出,在测试批量数为20至210时,读取耗时最少的批量数是64。这是因为大多数现代CPU都有64KB的L1缓存,因此64是一个很好的批量大小,可以最大限度地利用缓存,减少内存访问和数据读取的时间。

解释代码:def train_ae(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') Image_path = "data\\figures_simplify\\" visualize = False epochs = 1000 lr0 = 1e-3 train_ratio = 0.8 batch_size = 16 features_num = 700 model = AE(features_num=features_num).to(device) image_set = ImageDataset(Image_path) train_size = int(len(image_set) * train_ratio) test_size = int(len(image_set)) - train_size train_dataset, test_dataset = torch.utils.data.random_split(image_set, [train_size, test_size]) train = DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test = DataLoader(test_dataset, batch_size=batch_size, shuffle=True) criterion = nn.MSELoss() optimizer = optim.Adam(model.parameters(), lr=lr0)

这段代码是一个训练自编码器(Autoencoder)的函数。让我来解释一下代码的每个部分: 1. `device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')`: 这一行代码用于检测是否有可用的GPU,如果有则将设备设置为cuda,否则设置为cpu。 2. `Image_path = "data\\figures_simplify\\"`: 这里定义了存储图像数据的路径。 3. `visualize = False`: 这个变量用于控制是否在训练过程中可视化结果。 4. `epochs = 1000`: 这个变量定义了训练的轮数。 5. `lr0 = 1e-3`: 这个变量定义了初始学习率。 6. `train_ratio = 0.8`: 这个变量定义了训练集所占的比例,测试集所占比例为 (1 - train_ratio)。 7. `batch_size = 16`: 这个变量定义了每个小批量的样本数量。 8. `features_num = 700`: 这个变量定义了自编码器的输入特征数量。 9. `model = AE(features_num=features_num).to(device)`: 这里创建了一个自编码器模型,并将其移动到指定的设备上。 10. `image_set = ImageDataset(Image_path)`: 这里创建了一个自定义的数据集对象,用于加载图像数据。 11. `train_size = int(len(image_set) * train_ratio)`: 这里计算了训练集的大小。 12. `test_size = int(len(image_set)) - train_size`: 这里计算了测试集的大小。 13. `train_dataset, test_dataset = torch.utils.data.random_split(image_set, [train_size, test_size])`: 这里将数据集随机分割为训练集和测试集。 14. `train = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)`: 这里创建了一个训练数据加载器,用于批量加载训练数据。 15. `test = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)`: 这里创建了一个测试数据加载器,用于批量加载测试数据。 16. `criterion = nn.MSELoss()`: 这里定义了损失函数,使用均方误差(MSE)作为损失函数。 17. `optimizer = optim.Adam(model.parameters(), lr=lr0)`: 这里定义了优化器,使用Adam优化算法,并传入模型参数和学习率。 以上就是这段代码的解释,它主要是用于训练一个自编码器模型。
阅读全文

相关推荐

def evaluate(self, datloader_Test): Image_Feature_ALL = [] Image_Name = [] Sketch_Feature_ALL = [] Sketch_Name = [] start_time = time.time() self.eval() for i_batch, sampled_batch in enumerate(datloader_Test): sketch_feature, positive_feature = self.test_forward(sampled_batch) Sketch_Feature_ALL.extend(sketch_feature) #草图特征 模型的 Sketch_Name.extend(sampled_batch['sketch_path']) #草图名 for i_num, positive_name in enumerate(sampled_batch['positive_path']): #遍历正例图像 if positive_name not in Image_Name: Image_Name.append(positive_name) Image_Feature_ALL.append(positive_feature[i_num]) rank = torch.zeros(len(Sketch_Name)) Image_Feature_ALL = torch.stack(Image_Feature_ALL) Image_Feature_ALL = Image_Feature_ALL.view(Image_Feature_ALL.size(0), -1) for num, sketch_feature in enumerate(Sketch_Feature_ALL): s_name = Sketch_Name[num] sketch_query_name = os.path.basename(s_name) # 提取草图路径中的文件名作为查询名称 position_query = -1 for i, image_name in enumerate(Image_Name): if sketch_query_name in os.path.basename(image_name): # 提取图像路径中的文件名进行匹配 position_query = i break if position_query != -1: sketch_feature = sketch_feature.view(1, -1) distance = F.pairwise_distance(sketch_feature, Image_Feature_ALL) target_distance = F.pairwise_distance(sketch_feature, Image_Feature_ALL[position_query].view(1, -1)) rank[num] = distance.le(target_distance).sum() top1 = rank.le(1).sum().item() / rank.shape[0] top10 = rank.le(10).sum().item() / rank.shape[0] print('Time to Evaluate: {}'.format(time.time() - start_time)) return top1, top10

大家在看

recommend-type

水利 SWMM PEST++ 自动率定

内容概要:使用PEST++自动率定SWMM模型的参数,实现参数的自动优选 适用人群:水利工作者 使用场景及目标:自动率定SWMM模型的参数 其他说明:也可以自动率定其他模型的参数
recommend-type

批量标准矢量shp互转txt工具

1.解压运行exe即可。(适用于windows7、windows10等操作系统) 2.标准矢量shp,转换为标准txt格式 4.此工具专门针对自然资源系统:建设用地报批、设施农用地上图、卫片等系统。
recommend-type

测量变频损耗L的方框图如图-所示。-微波电路实验讲义

测量变频损耗L的方框图如图1-1所示。 图1-1 实验线路 实验线路连接 本振源 信号源 功率计 定向耦合器 超高频毫伏表 滤波器 50Ω 混频器 毫安表
recommend-type

安装向导-pro/engineer野火版5.0完全自学一本通

1.3 安装向导 在第一次使用密码机,可以使用管理程序的安装向导功能,逐步完成对密码机 的基本配置。如果需要使用其他配置功能,可参考本章节其他管理操作说明。 安装向导提供以下主要配置功能: a) 初始化密码机:清空所有密钥及管理信息。 b) 管理员初始化:为保证设备的安全性、可靠性,及正常使用所有功能,建议 设置 3 个管理员(标准配置)。 c) 操作员初始化:用于启动密码服务。 d) RSA 密钥管理:产生 RSA 签名密钥对或加密密钥对并保存在密码设备内部。
recommend-type

中南大学943数据结构1997-2020真题&解析

中南大学943数据结构1997-2020真题&解析

最新推荐

recommend-type

python用TensorFlow做图像识别的实现

这通常涉及到计算模型在未见过的图像上的准确率,即正确预测的样本数占总样本数的比例。如果模型性能令人满意,我们可以将其用于实际的图像识别任务,比如识别新的手写数字图像。 总的来说,使用TensorFlow进行图像...
recommend-type

keras的ImageDataGenerator和flow()的用法说明

当`batch_size`小于`X_train`的第一维(样本数)时,它会随机抽取`batch_size`个样本;如果`batch_size`大于样本数,所有样本都会被随机排序并分成多个批次。 在示例代码中,创建了一个`ImageDataGenerator`实例,...
recommend-type

keras实现VGG16 CIFAR10数据集方式

为了防止过拟合,我们引入L2正则化,设置权重衰减参数`weight_decay`,并定义训练轮数`nb_epochs`和批处理大小`batch_size`: ```python weight_decay = 0.0005 nb_epoch=100 batch_size=32 ``` 现在,我们开始...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

- `-b`表示批大小(batch size) - `-l`表示学习率 - `-s`表示缩放比例 - `-v`表示验证集比例 - **训练自己的数据集**: 调整数据集命名以保持一一对应,确保输入是3通道图像,输出是单通道掩模。如果遇到`...
recommend-type

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码

简单的基于 Kotlin 和 JavaFX 实现的推箱子小游戏示例代码。这个游戏包含了基本的地图布局、玩家控制角色推动箱子到目标位置的功能,不过目前还只是一个简单的控制台版本,你可以根据后续的提示进一步扩展为图形界面版本并添加推流相关功能(推流相对复杂些,涉及到网络传输和流媒体协议等知识,需要借助如 FFmpeg 或者专门的流媒体库来实现,这里先聚焦游戏本身的逻辑构建)
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"