dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class nb = len(dataloader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
时间: 2024-02-06 13:03:13 浏览: 214
pytorch dataloader 取batch_size时候出现bug的解决方式
这段代码是用于创建数据加载器(dataloader)和数据集(dataset),以便在训练神经网络时使用。其中包括以下步骤:
1. 调用 create_dataloader 函数,该函数使用一些参数(train_path, imgsz, batch_size, gs, opt, hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank, world_size=opt.world_size, workers=opt.workers)来创建数据加载器和数据集。其中,train_path 是训练数据集的路径,imgsz 是图像的尺寸,batch_size 是每个批次数据的大小,gs 是图像的缩放比例,opt 是一些训练参数,hyp 是超参数,augment=True 表示使用数据增强,cache=opt.cache_images 表示是否将图像缓存在内存中,rect=opt.rect 表示是否使用矩形框对图像进行裁剪,rank 表示当前进程的排名,world_size 表示进程的总数,workers 表示用于加载数据的工作进程数。
2. 将数据集的标签(labels)连接起来,并取出其中第一列的最大值,得到标签的最大类别数(mlc)。
3. 计算数据加载器中批次数据的数量(nb)。
4. 如果标签的最大类别数(mlc)超过了类别数(nc),则会抛出一个异常,提示标签类别数超过了类别数。
总的来说,这段代码是用于创建数据加载器和数据集,并检查标签的类别数是否超过了网络可以处理的类别数。
阅读全文