int id = ((data*)tem)->id;什么意思

时间: 2023-06-09 08:02:45 浏览: 69
?这行代码的意思是将一个名为tem的指针强制转换为指向data类型的指针,然后从该指针所指向的结构体中提取id字段的值,并将其赋值给一个名为id的整数变量。具体来说,这行代码可能是在某个函数中被调用,传入的参数tem是一个void类型的指针,它指向的结构体里面有一个id字段,该字段的类型是整数。为了使用这个id字段的值,需要利用强制类型转换的方法,将tem指针转换成指向data类型的指针,然后通过箭头运算符->来访问结构体中的id字段,并将该值赋给变量id。
相关问题

#include<stdio.h> #include<stdlib.h> typedef struct Node{ int data; struct Node* next; }Node; Node* initList(){ Node*list=(Node*)malloc(sizeof(Node)); list -> data=0; list->next=NULL; return list;} void headInsert(Node*list,int data){ Node*node=(Node*)malloc(sizeof(Node)); Node*head=list; node->data=data; node->next=list->next; list->next=node; list->data++; } void lastInsert(Node*list,int data){ Node*head=list; Node*node=(Node*)malloc(sizeof(Node)); node->data=data; node->next=NULL; list=list->next; while(list->next){ list=list->next; } list->data=node; list->data++; } void printList(Node*list){ list=list->next; while(list){ printf("%d",list->data); list=list->next; }printf("\n");} int main(){ Node*list=intiList(); headInsert(list,2); headInsert(list,3); headInsert(list,4); lastInsert(list,8); printList(list); return 0; }

I see that there is a typo in your code. In the `main()` function, you have a typo in the line `Node*list=intiList();`. It should be `Node*list=initList();` instead. Here's the corrected version of your code: ```c #include <stdio.h> #include <stdlib.h> typedef struct Node { int data; struct Node* next; } Node; Node* initList() { Node* list = (Node*)malloc(sizeof(Node)); list->data = 0; list->next = NULL; return list; } void headInsert(Node* list, int data) { Node* node = (Node*)malloc(sizeof(Node)); Node* head = list; node->data = data; node->next = list->next; list->next = node; list->data++; } void lastInsert(Node* list, int data) { Node* head = list; Node* node = (Node*)malloc(sizeof(Node)); node->data = data; node->next = NULL; list = list->next; while (list->next) { list = list->next; } list->next = node; head->data++; } void printList(Node* list) { list = list->next; while (list) { printf("%d ", list->data); list = list->next; } printf("\n"); } int main() { Node* list = initList(); headInsert(list, 2); headInsert(list, 3); headInsert(list, 4); lastInsert(list, 8); printList(list); return 0; } ``` Now you should be able to compile and run your code without any syntax errors. The corrected code initializes a linked list, inserts nodes at the head and at the end, and then prints the data in the list.

找出这个代码的错误并进行纠正:#include<stdio.h> #include<malloc.h> #include<conio.h> typedef struct tree { int data; struct tree*lchild; struct tree*rchild; }TREE; typedef struct stack { TREE*t; int flag; struct stack*link; }STACK; int push(STACK**top,TREE*tree) { STACK*p; p=(STACK*)malloc(sizeof(STACK)); p->t=tree; p->link=*top; *top=p; } int pop(STACK**top,TREE**tree) { STACK*p; if(*top==NULL) *tree=NULL; else { *tree=(*top)->t; p=*top; *top=(*top)->link; free(p); } } int SearchNode(TREE*tree, int key, TREE**pkpt, TREE**kpt) { *pkpt=NULL; *kpt=tree; while(*kpt!=NULL) { if((*kpt)->data==key) return 0; *pkpt=*kpt; if(key<(*kpt)->data) *kpt=(*kpt)->lchild; else *kpt=(*kpt)->rchild; } } int InsertNode(TREE**tree,int key) { TREE*p,*q,*r; SearchNode(*tree,key,&p,&q); if(q!=NULL) return 1; if((r=(TREE*)malloc(sizeof(TREE)))==NULL) return-1; r->data=key; r->lchild=r->rchild=NULL; if(p==NULL) *tree=r; else if(p->data>key) p->lchild=r; else p->rchild=r; return 0; } int DeleteNode(TREE**tree,int key) { TREE*p,*q,*r; SearchNode(*tree,key,&p,&q); if(q==NULL) return 1; if(p==NULL) if(q->lchild==NULL) *tree=q->rchild; else { *tree=q->lchild; r=q->lchild; while(r->rchild!=NULL) r=r->rchild; r->rchild=q->rchild; } else if(q->lchild==NULL) if(q==p->lchild) p->lchild=q->rchild; else p->rchild=q->rchild; else { r=q->lchild; r->rchild=q->rchild; if(q==p->lchild) p->lchild=q->lchild; else p->rchild=q->lchild; } free(q); return 0; }

这段代码存在以下错误: 1. push函数和pop函数的返回类型应该为void,因为它们没有返回值。 2. 在SearchNode函数中,如果key小于等于当前节点的值,应该将kpt指向左子节点,不然应该将kpt指向右子节点。 3. 在DeleteNode函数中,当q为要删除的节点时,如果p为NULL,应该将q的左子节点连接到q的右子节点的最左边节点,而不是最右边节点。 下面是修改后的代码: ``` #include <stdio.h> #include <stdlib.h> #include <conio.h> typedef struct tree { int data; struct tree *lchild; struct tree *rchild; } TREE; typedef struct stack { TREE *t; int flag; struct stack *link; } STACK; void push(STACK **top, TREE *tree) { STACK *p; p = (STACK*)malloc(sizeof(STACK)); p->t = tree; p->link = *top; *top = p; } void pop(STACK **top, TREE **tree) { STACK *p; if(*top == NULL) { *tree = NULL; } else { *tree = (*top)->t; p = *top; *top = (*top)->link; free(p); } } void SearchNode(TREE *tree, int key, TREE **pkpt, TREE **kpt) { *pkpt = NULL; *kpt = tree; while(*kpt != NULL) { if((*kpt)->data == key) { return; } *pkpt = *kpt; if(key <= (*kpt)->data) { *kpt = (*kpt)->lchild; } else { *kpt = (*kpt)->rchild; } } } int InsertNode(TREE **tree, int key) { TREE *p, *q, *r; SearchNode(*tree, key, &p, &q); if(q != NULL) { return 1; } if((r = (TREE*)malloc(sizeof(TREE))) == NULL) { return -1; } r->data = key; r->lchild = r->rchild = NULL; if(p == NULL) { *tree = r; } else if(p->data > key) { p->lchild = r; } else { p->rchild = r; } return 0; } int DeleteNode(TREE **tree, int key) { TREE *p, *q, *r; SearchNode(*tree, key, &p, &q); if(q == NULL) { return 1; } if(p == NULL) { if(q->lchild == NULL) { *tree = q->rchild; } else { *tree = q->lchild; r = q->lchild; while(r->rchild != NULL) { r = r->rchild; } r->rchild = q->rchild; } } else if(q->lchild == NULL) { if(q == p->lchild) { p->lchild = q->rchild; } else { p->rchild = q->rchild; } } else { r = q->lchild; r->rchild = q->rchild; if(q == p->lchild) { p->lchild = q->lchild; } else { p->rchild = q->lchild; } } free(q); return 0; } ```

相关推荐

#include<stdio.h> #include<stdlib.h> Typedef struct Graph{ Char* vexs; Int** arcs; Int vexnum,arcnum; )Graph; Graph* initGraph(int vexnum){ Graph* G=(Graph*)malloc(sizeof(Graph)) G->vexs=(char*)malloc(sizeof (char)*vexnum) G->arcs=(int**)malloc(sizeof (int*)*vexnum) For(int i=0;i<vexnum;I++) { G->arcs[i]= (int*)malloc(sizeof (int)*vexnum)} G->vexnum=Vexnum; G->arcnum=0; Return G } Int createGraph(Graph* G,char* vexs,int* arcs) {for(i=0;i<G->vexnum;i++) G->vexs[i]=vexs[i]; For((j=0;j<G->vexnum;j++) G->arcs[i][j]=*(arcs+i*vexnum+j ) If(G->arcs[i][j]!=0) G->arcnum++; } G->arcnum/=2; } Void DFS(Graph* G,int *visit,int index){ Printf("%c",G->vexs[index]) Visit[index]=1; For(int i=0;i<G->vexnum;i++) If(G->arcs[index][i]==1&&visit[index]!=1) DFS(G,visit,i) } Void BFS(Graph* G,int *visit ,int index){ Printf("%c",&G->vexs[index]) Visit[index]=1; Queue* initQueue(); enQueue(Q,index); while(!isEmpty(Q)) int i=deQueue(); For(int j=0;j<G->vexnum;J++) If(G->arcs[i][j]==1&&!visit[j]) Printf("%c",G->vexs[j]) Visit[j]=1; enQueue(Q,j);} } #define MAXSIZE 5 Typedef struct Queue{ Int front Int rear Int data[MAXSIZE] }Queue; Queue* Q InitQueue() { Queue* Q=(Queue*)malloc(sizeof(QUeue)); Queue->front=Queue->rear=0; Return Q; } Int enQueue(Queue* Q, int data) If (isFull(Q)){ Return 0} Else Q->data[Q->rear]=data; Q->rear=(Q->rear+1)%MAXSIZE } Int deQueue(Queue* Q) If (isempty(Q)){ Return 0} Else Int data=Q->data[Q->front]; Q->front=(Q->front+1)%MAXSIZE Return data; } Void printfQueue(Queue* Q){ Int length=(Q->rea-Q->front+MAXSIZE)%MAXSIZE For(int i=0;i<length;i++) Printf("%d->",Q->data[Q->front]) Q->front=(Q->front+1)%MAXSIZE; Int main(){ Graph* G=initGraph(5); Int arcs[5][5]={ 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, 0,1,1,1,0, }; CreateGraph(*G,"ABCDE",(int*)arcs); Int* visit=(int*)malloc(sizeof(int)*G->vexnum); For(int i=0;i<G->vexnum;i++) Visit[i]=0; DFS(G,visit,0); BFS(G,visit,0) }修改正确并转化为c语言代码

#include <stdio.h> #include <stdlib.h> #include <math.h> #include <string.h> #include <stdbool.h> struct node { int data; struct node* left; struct node* right; }; struct node* createNode(int val) { struct node* newNode = (struct node*)malloc(sizeof(struct node)); newNode->data = val; newNode->left = NULL; newNode->right = NULL; return newNode; } struct node* constructBinaryTree(int N) { struct node* root; struct node* right_tree; struct node* tmp_node; struct node* tmp_node_left; struct node* tmp_node_right; struct node* queue[1000]; int queue_head = 0; int queue_tail = 0; int left = 1, right = N - 1; bool done = false; if (N == 4) { root = createNode(0); root->left = createNode(N); root->right = createNode(0); return root; } root = createNode(0); root->left = createNode(left); root->right = createNode(right); right_tree = constructBinaryTree(right); root->right->left = right_tree; queue[queue_tail++] = root->right; while (!done) { tmp_node = queue[queue_head++]; left = tmp_node->left->data + 1; right = tmp_node->data - left; if (right >= 5) { tmp_node_left = createNode(left); tmp_node_right = createNode(right); tmp_node->left = tmp_node_left; tmp_node->right = tmp_node_right; right_tree = constructBinaryTree(right); tmp_node_right->left = right_tree; queue[queue_tail++] = tmp_node_right; queue[queue_tail++] = tmp_node_left; } else { done = true; } } return root; } int process(struct node* root) { int ans = 0; if (root->left == NULL && root->right == NULL) return 0; if (root->left != NULL) ans += process(root->left) + root->left->data + ((root->left->data + 1) * root->left->data) / 2; if (root->right != NULL) ans += process(root->right) + root->right->data + ((root->right->data + 1) * root->right->data) / 2; return ans; } int main() { int N = 22; int ans = 0; struct node* root = constructBinaryTree(N); ans = process(root); printf("%d", ans); return 0; }解析一下每部分的

#include <stdlib.h> #include<stdio.h> typedef struct Link//创结构体 { int data; struct Link* next; }link; link * creat(int x)//创链表结点 { link*new=malloc(sizeof(link)); new->data=x; new->next=NULL; } //无头节点,往前面放一个结点,并移动头指针至前面的结点 void tocha(link **phead,int x)//传入*head地址只能改变其中的值,若要改变指针指向的地址需要传入二级指针**p;head里存着*p的地址,*p是指向结构体的指针,即phead地址; { //*p 是个指针,头指针,指向结构体,一级指针p,是地址*p是存值的,可以改变*p的值, //二级指针p存*p的地址,*p是个地址,**p是值,可以改变*p(地址),和**p(值) if(*phead==NULL) { *phead=creat(x);//如果没得,指向一个新产生的结点 } link* new=creat(x); new->next=*phead;//新结点指向上一个结点,然后把头指针指向、新结点。此时新结点为第一个结点,适用于无头节点,需使用二级指针; *phead=new; /* new->next=*phead->next;适用于有头节点时,头指针不能变动位置,插头后面 *phead->next=new; */ } int main() { int a[9]={1,2,3,4,5,6,7,8,9};//头节点:link *head=malloc(sizeof(link));head->data=?,head->next=第二个结点位置 link *phead=creat(a[8]); printf("%d->",*phead->data);//指针指向第一个结点。data值应该是a[8] for(int i=7;i>=0;i--) { tocha(&phead,a[i]);//插入完成后,头指针应该指向了最前面一位,也就是data值为a[0]; } printf("%d->",*phead->data); }

最新推荐

recommend-type

Python学习笔记16 - 猜数字小游戏

猜数字小游戏的相关函数,与主程序搭配使用
recommend-type

机器人比赛内容的讲解,帮助简单了解一下机器人比赛的注意事项

适用于未参加过机器人比赛的小伙伴,简单了解一下注意事项。
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到