将全球划分为五个温度带,界限分别为北回归线北极圈,请给出支撑性链接,或者文献pdf

时间: 2023-10-09 20:14:18 浏览: 67
全球划分为五个温度带的界限一般认为是:赤道地区、热带、温带、寒带和极地。其中赤道地区为热带的一部分。以下是一些支持这种划分的链接和文献: 1. 美国国家地理学会关于地球的温度带划分的介绍:https://www.nationalgeographic.org/encyclopedia/climate-zones/ 2. 世界气象组织关于温带和寒带的界限的详细介绍:https://library.wmo.int/doc_num.php?explnum_id=10136 3. 《地理学原理》(作者:William Norton)一书中关于温带和寒带的界限的描述:https://books.google.com/books?id=8tq7DwAAQBAJ&pg=PA59&dq=global+temperature+zones&hl=en&sa=X&ved=2ahUKEwiO5J6C1ZvyAhWjyDgGHQKfCtMQ6AEwAXoECAQQAg#v=onepage&q=global%20temperature%20zones&f=false 希望这些资料能够帮到你。
相关问题

简述布线问题的分支界限算法步骤,分析该算法的时间复杂度并给出一个具体的算例。

布线问题的分支界限算法步骤如下: 1. 将给定的电路网格化,每一个节点表示一个网格点。将所有可用的网格点标记为“空闲”。 2. 将所有需要布线的器件放置在网格上的合法位置,并将其标记为“占用”。 3. 随机选择一个起始点和一个目标点。 4. 对于每个起始点,使用广度优先搜索(BFS)来查找到达目标点的最短路径。 5. 对于每个找到的路径,将其与所有已布线的路径进行比较,如果存在冲突,则剪枝该路径。 6. 对于所有未被剪枝的路径,计算其总长度,并将其添加到候选解列表中。 7. 选择当前候选解列表中长度最短的解作为当前最优解。 8. 对于所有未被扩展的起始点和目标点,生成所有可能的扩展,将其添加到搜索树中。 9. 重复步骤4-8,直到找到最优解或者搜索树为空。 该算法的时间复杂度主要取决于搜索树的大小和每次搜索的复杂度。在最坏情况下,搜索树的大小为 O(b^d),其中 b 是扩展因子,d 是搜索树的深度。而每次搜索的复杂度为 O(n^2),其中 n 是网格的大小。因此,该算法的时间复杂度为 O(b^d * n^2)。 以下是一个具体的算例: 假设我们需要在一个 5x5 的网格上布置两个器件,分别在位置 (1,1) 和 (4,5)。起始点为 (1,1),目标点为 (5,5)。 首先,我们将所有可用网格点标记为“空闲”,将两个器件标记为“占用”。 然后,我们使用 BFS 查找所有从起始点到目标点的路径。在这个例子中,我们找到了两条路径,分别为 (1,1) -> (2,1) -> (3,1) -> (4,1) -> (5,1) -> (5,2) -> (5,3) -> (5,4) -> (5,5) 和 (1,1) -> (1,2) -> (1,3) -> (1,4) -> (2,4) -> (3,4) -> (4,4) -> (4,5) -> (5,5)。 由于这两条路径存在冲突(在位置 (4,4)),我们剪枝其中一条路径。假设我们剪枝第一条路径,那么我们就会选择第二条路径作为当前最优解。 接下来,我们将起始点 (2,1) 和目标点 (4,5) 添加到搜索树中,并重复步骤4-8,直到找到最优解或者搜索树为空。

简述装载问题的分支界限算法步骤,分析该算法的时间复杂度并给出一个具体的算例。

装载问题是一类经典的NP完全问题,分支界限算法是一种针对该问题的优秀求解方法。其基本思想是:通过不断的分支和剪枝,将搜索空间缩小到最优解所在的区域,以提高搜索效率。 分支界限算法的步骤如下: 1. 初始化:设定搜索树根节点为初始状态,将当前状态加入到优先队列中。 2. 扩展节点:从优先队列中取出一个节点进行扩展,生成该节点的所有子节点,并计算它们的上界和下界。 3. 判断是否达到终止条件:如果已经找到了最优解,则终止搜索;否则,将所有子节点加入到优先队列中。 4. 重复步骤2~3,直到找到最优解或者队列为空。 分支界限算法的时间复杂度取决于搜索树的大小,因此随着数据规模的增加,时间复杂度呈指数级增长,效率较低。但是,该算法的优点在于能够保证找到最优解。 下面给出一个具体算例:假设有一个装载问题,要求将若干物品装入船中,船的载重量为C,物品的重量分别为w1、w2、w3、w4、w5、w6,如何才能使船的利用率最大? 我们先对物品按照重量从大到小排序,得到w6、w5、w4、w3、w2、w1。 初始状态下,船的空间为C,当前利用率为0。 第一步,将w6放入船中,船的剩余空间为C-w6,当前利用率为w6/C。 第二步,将w5放入船中,船的剩余空间为C-w6-w5,当前利用率为(w6+w5)/C。 第三步,将w4放入船中,船的剩余空间为C-w6-w5-w4,当前利用率为(w6+w5+w4)/C。 第四步,将w3放入船中,船的剩余空间为C-w6-w5-w4-w3,当前利用率为(w6+w5+w4+w3)/C。 第五步,由于w2的重量已经超过了剩余空间,因此不可能再放入船中,我们需要回溯到第四步,将w3取出。 第六步,将w2放入船中,船的剩余空间为C-w6-w5-w4-w2,当前利用率为(w6+w5+w4+w2)/C。 第七步,由于w1的重量已经超过了剩余空间,因此不可能再放入船中,我们需要回溯到第六步,将w2取出。 第八步,将w1放入船中,船的剩余空间为C-w6-w5-w4-w1,当前利用率为(w6+w5+w4+w1)/C。 通过该算例的演示,我们可以看出,分支界限算法能够高效地解决装载问题,找到最优解。

相关推荐

最新推荐

recommend-type

51单片机控制步进电机三轴联动51单片机控制步进电机三轴联动51单片机控制步进电机3轴联动c语言,抛砖引玉供大家参考。.zip

51单片机控制步进电机三轴联动51单片机控制步进电机三轴联动51单片机控制步进电机3轴联动c语言,抛砖引玉供大家参考。
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例

![MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例](https://img-blog.csdnimg.cn/img_convert/007dbf114cd10afca3ca66b45196c658.png) # 1. MATLAB矩阵方程求解理论基础** MATLAB中矩阵方程求解是数值分析中一个重要的课题。矩阵方程的形式一般为`Ax = b`,其中`A`是一个系数矩阵,`x`是未知向量,`b`是常数向量。求解矩阵方程的方法有很多,包括直接求解法和迭代求解法。 直接求解法通过对系数矩阵`A`进行分解,将矩阵方程转化为求解三角形方程组或线性方程组,从而得到未知向量`x`。常见
recommend-type

abap dialog单选框画屏

在ABAP中,可以使用Dialog Programming来创建屏幕和用户界面。要创建一个ABAP Dialog单选框画屏,可以按照以下步骤进行操作: 1. 首先,在ABAP编辑器中创建一个新的屏幕画面(Screen Painter)。 2. 在屏幕画面上,选择“元素”工具栏中的“单选按钮”(Radio Button)工具。 3. 在屏幕上点击并拖动鼠标,绘制一个单选按钮的区域。 4. 在属性窗口中,为单选按钮指定一个唯一的名称和描述。 5. 可以选择设置单选按钮的默认状态(选中或未选中)。 6. 如果需要,可以在屏幕上添加其他的单选按钮。 7. 完成屏幕设计后,保存并激活屏幕画面。 在A
recommend-type

藏经阁-玩转AIGC与应用部署-92.pdf

"《藏经阁-玩转AIGC与应用部署-92》是一本专为阿里云开发者设计的电子手册,聚焦于人工智能生成内容(AIGC)在传媒、电商、影视等行业中的应用与技术探讨。作者张亦驰(怀潜)和丁小虎(脑斧),以及阿里云的AnalyticDB、函数计算FC和大数据AI技术团队,共同分享了五篇深度技术文章。 书中的内容涵盖了以下几个关键知识点: 1. AIGC基础与应用:介绍了AIGC如何作为新兴的内容生产方式,通过大模型技术提高内容生产和创新性,如基于大模型的创作工具在实际场景中的应用。 2. 大模型实战:书中详细展示了如何利用Hologres(云数据库)结合大模型,如ChatGPT,来解决商家问题,实现智能化客服。通过Hologres+大模型,商家可以更高效地获取答案,提升服务质量。 3. AnalyticDB与LLM(大语言模型):阐述了如何利用AnalyticDB(ADB)构建企业专属的AIGC Chatbot,增强企业的自动化沟通能力。 4. 生产力提升:讨论了大模型如何解放人类生产力,从理论层面揭示了AIGC从概念到实际应用的转变,展现了其在内容生产中的革新作用。 5. 云产品部署实践:提供了具体的操作指南,例如5分钟内如何使用函数计算FC部署StableDiffusion服务,以及如何通过PAI一键部署AI绘画应用,让读者能够快速上手并进行云上实践。 6. 试用与学习资源:书中还鼓励读者尝试模型在线服务PAI-EAS和函数计算FC的免费试用,以便更好地理解和运用AIGC技术。 《藏经阁》不仅是技术指南,也是AIGC入门者和进阶者的宝典,帮助读者理解AIGC在智能时代的重要性和广泛应用,引导他们探索并掌握云上技术部署的实际操作。通过阅读这本书,读者不仅能深入了解AIGC的潜力,还能掌握阿里云提供的相关云产品,推动内容生产行业的创新发展。"