class myModel: def __init__(self): #################### '''声明模型对应的参数''' #################### self.W1 = tf.Variable(shape=[28 * 28, 100], dtype=tf.float32, # 定义w1 28*28 为input 784个点 100为中间层 initial_value=tf.random.uniform(shape=[28 * 28, 100], minval=-0.1, maxval=0.1)) # 最小值最大值设定为0.1 self.b1 = tf.Variable(shape=[100], dtype=tf.float32, initial_value=tf.zeros(100)) # 定义b1 self.W2 = tf.Variable(shape=[100, 10], dtype=tf.float32, # 定义W2 initial_value=tf.random.uniform(shape=[100, 10], # 输出为10个 minval=-0.1, maxval=0.1)) self.b2 = tf.Variable(shape=[10], dtype=tf.float32, initial_value=tf.zeros(10)) # 定义b2 self.trainable_variables = [self.W1, self.W2, self.b1, self.b2] # 输出w1,w2,b1,b2各个值,这段代码的含义是什么
时间: 2024-02-14 07:21:14 浏览: 70
Django 删除upload_to文件的步骤
这段代码定义了一个名为 "myModel" 的类,该类包含了一个初始化函数 "__init__" ,在该函数中定义了模型的参数。其中,W1、W2、b1、b2 分别表示模型的权重和偏差,是 Tensorflow 的 Variable 类型,代表可训练的参数。trainable_variables 列表包含了所有可训练的参数,用于在训练模型时更新这些参数的值。这段代码的作用是创建一个简单的全连接神经网络模型,并定义了模型的参数。
阅读全文