x = values[-365:] distance = []for i in range(len(values)-730): y = values[i:i+365] dis, path = fastdtw(x, y, dist=euclidean) distance.append(dis)代码什么意思

时间: 2024-03-04 10:54:26 浏览: 139
这段代码与之前的那段代码相似,也是使用fastdtw算法计算两个时间序列x和y之间的动态时间规整(Dynamic Time Warping, DTW)距离。不同的是,这里的x是从values序列中取出的最后365个值,也就是最近一年的时间序列。对于每个从values序列中以步长为1滑动窗口取出的长度为365的子序列y,计算其与最近一年的时间序列x之间的DTW距离,并将距离值添加到一个名为distance的列表中,最终得到所有子序列与最近一年时间序列的DTW距离列表。这段代码的作用也是对时间序列进行相似性度量,用于时间序列分类、聚类、异常检测等应用场景。
相关问题

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

首先,我们需要定义这些指标: 1. SSE (Sum of Squared Errors):误差平方和,表示每个点到其所属簇中心的距离的平方和,用于评估聚类效果的好坏。 2. 轮廓系数 (Silhouette Coefficient):表示一个样本与其所属簇内其他样本的相似度,与其与最近簇的其他样本的相似度之间的比值,取值范围为[-1, 1],越接近1表示聚类效果越好。 3. 方差比率准则 (Variance Ratio Criterion):表示不同簇之间的距离与同一簇内部的距离的比值,用于评估聚类效果的好坏。 4. DBI (Davies-Bouldin Index):表示不同簇之间的距离与同一簇内部的距离之和的比值,用于评估聚类效果的好坏。 接下来,我们分别用这些指标来评估上面两段代码实现的K-means算法的聚类效果。 对于第一段代码,我们可以在K-means算法的函数中添加计算SSE的代码,并在函数返回值中返回SSE的值。同时,我们可以使用sklearn库中的metrics模块来计算轮廓系数。方差比率准则的计算与SSE类似,只需要将距离平方和改为距离的平方和,即可得到方差比率准则的值。DBI的计算可以使用sklearn库中的metrics模块中的davies_bouldin_score函数来实现。 代码如下所示: ``` import random import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import silhouette_score from sklearn.metrics import davies_bouldin_score # 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points # 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) # K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) sse = 0 for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) # 计算SSE sse = np.sum(np.square(distances[np.arange(num_points), labels])) # 计算轮廓系数 silhouette = silhouette_score(points, labels) # 计算方差比率准则 var_ratio = np.sum(np.min(distances, axis=1)) / sse # 计算DBI dbi = davies_bouldin_score(points, labels) return labels, centroids, sse, silhouette, var_ratio, dbi # 生成坐标点 points = generate_points(100) # 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids, sse, silhouette, var_ratio, dbi = kmeans(points, k) # 绘制聚类结果 colors = ['r', 'g', 'b', 'y', 'c', 'm'] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker='x', color='k', s=100) plt.title('K-means clustering with k={}'.format(k)) plt.show() print('SSE: {:.2f}'.format(sse)) print('Silhouette: {:.2f}'.format(silhouette)) print('Variance Ratio Criterion: {:.2f}'.format(var_ratio)) print('DBI: {:.2f}'.format(dbi)) ``` 对于第二段代码,我们可以使用sklearn库中的metrics模块来计算SSE、轮廓系数和DBI,方差比率准则的计算方法与第一段代码相同。 代码如下所示: ``` import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris from sklearn.metrics import silhouette_score from sklearn.metrics import davies_bouldin_score # 载入数据集 iris = load_iris() X = iris.data y = iris.target # K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) # 计算SSE sse = np.sum(np.square(X - kmeans.cluster_centers_[kmeans.labels_])) # 计算轮廓系数 silhouette = silhouette_score(X, kmeans.labels_) # 计算方差比率准则 var_ratio = kmeans.inertia_ / sse # 计算DBI dbi = davies_bouldin_score(X, kmeans.labels_) # 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel('Sepal length') plt.ylabel('Sepal width') plt.title('K-means clustering on iris dataset') plt.show() print('SSE: {:.2f}'.format(sse)) print('Silhouette: {:.2f}'.format(silhouette)) print('Variance Ratio Criterion: {:.2f}'.format(var_ratio)) print('DBI: {:.2f}'.format(dbi)) ``` 通过这些指标的计算,我们可以得到K-means算法的聚类效果的好坏。一般来说,SSE和轮廓系数越小,方差比率准则越大,DBI越小,则聚类效果越好。

优化这段代码:def calDistanceMatrix(model): for i in range(len(model.demand_id_list)): from_node_id = model.demand_id_list[i] for j in range(i + 1, len(model.demand_id_list)): to_node_id = model.demand_id_list[j] dist = math.sqrt((model.demand_dict[from_node_id].x_coord - model.demand_dict[to_node_id].x_coord) ** 2 + (model.demand_dict[from_node_id].y_coord - model.demand_dict[to_node_id].y_coord) ** 2) model.distance_matrix[from_node_id, to_node_id] = dist model.distance_matrix[to_node_id, from_node_id] = dist for _, vehicle in model.vehicle_dict.items(): dist = math.sqrt((model.demand_dict[from_node_id].x_coord - vehicle.x_coord) ** 2 + (model.demand_dict[from_node_id].y_coord - vehicle.y_coord) ** 2) model.distance_matrix[from_node_id, vehicle.type] = dist model.distance_matrix[vehicle.type, from_node_id] = dist

可以优化的地方有两个: 1. 可以使用numpy中的ndarray来计算两点之间的距离,这样可以避免使用循环,提高计算速度。 2. 在计算距离矩阵之前,可以将所有点的坐标都存储到一个矩阵中,这样可以避免在循环中重复计算坐标。 优化后的代码如下所示: ```python import numpy as np def calDistanceMatrix(model): coord_matrix = np.array([(demand.x_coord, demand.y_coord) for demand in model.demand_dict.values()] + [(vehicle.x_coord, vehicle.y_coord) for vehicle in model.vehicle_dict.values()]) for i in range(len(model.demand_id_list)): from_node_id = model.demand_id_list[i] from_coord = coord_matrix[i] for j in range(i + 1, len(model.demand_id_list)): to_node_id = model.demand_id_list[j] to_coord = coord_matrix[j] dist = np.sqrt(np.sum((from_coord - to_coord) ** 2)) model.distance_matrix[from_node_id, to_node_id] = dist model.distance_matrix[to_node_id, from_node_id] = dist for _, vehicle in model.vehicle_dict.items(): vehicle_coord = coord_matrix[len(model.demand_dict) + vehicle.type] dist = np.sqrt(np.sum((from_coord - vehicle_coord) ** 2)) model.distance_matrix[from_node_id, vehicle.type] = dist model.distance_matrix[vehicle.type, from_node_id] = dist ``` 这样,代码的计算速度可以得到一定的提升。
阅读全文

相关推荐

import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from scipy.spatial.distance import cdist from ant_colony import solve_tsp # 读取城市数据 df = pd.read_excel('world_coordinate.xlsx', index_col=0, dtype=str) # 提取城市和经纬度数据 countrys = df.index.values countrys_coords = np.array(df['[longitude, latitude]'].apply(eval).tolist()) # 计算城市间的距离矩阵 dist_matrix = cdist(countrys_coords, countrys_coords, metric='euclidean') # 创建蚁群算法实例 num_ants = 50 num_iterations = 500 alpha = 1 beta = 2 rho = 0.5 acs = solve_tsp(dist_matrix, num_ants=num_ants, num_iterations=num_iterations, alpha=alpha, beta=beta, rho=rho) # 输出访问完所有城市的最短路径的距离和城市序列 best_path = acs.get_best_path() best_distance = acs.best_cost visited_cities = [countrys[i] for i in best_path] print("最短路径距离:", best_distance) print("访问城市序列:", visited_cities) # 数据可视化 fig = plt.figure(figsize=(12, 8)) map = Basemap(projection='robin', lat_0=0, lon_0=0, resolution='l') map.drawcoastlines(color='gray') map.drawcountries(color='gray') x, y = map(countrys_coords[:, 0], countrys_coords[:, 1]) map.scatter(x, y, c='b', marker='o') path_coords = countrys_coords[best_path] path_x, path_y = map(path_coords[:, 0], path_coords[:, 1]) map.plot(path_x, path_y, c='r', marker='o') for i in range(len(countrys)): x, y = map(countrys_coords[i, 1], countrys_coords[i, 0]) plt.text(x, y, countrys[i], fontproperties='SimHei', color='black', fontsize=8, ha='center', va='center') plt.title("全球首都最短路径规划") plt.show()改成现在都有调用蚁群算法库的代码

最新推荐

recommend-type

2023年第三届长三角数学建模c题考试题目.zip

2023年第三届长三角数学建模c题考试题目,可下载练习
recommend-type

基于人工智能的毕业设计辅助系统基础教程

随着人工智能技术的飞速发展,越来越多的学生和研究人员开始利用AI技术来辅助他们的毕业设计。本教程旨在指导读者如何开发一个基于人工智能的毕业设计辅助系统,帮助学生更高效地完成毕业设计任务。
recommend-type

yolo算法-人脸情绪数据集-9400张图像带标签-内容-愤怒-害怕-厌恶-中立的-惊喜-悲哀的-幸福的.zip

yolo系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值
recommend-type

ijkplayer播放rtsp延时越来越高处理方案

文件1
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依