name = 'Coupon_id' # 折扣率排序 datas[name_prifix + 'discount_rateRank'] = datas.groupby(name)['discount_rate'].rank(ascending = False) datas[name_prifix + 'discount_rateRankAscend'] = datas.groupby(name)['discount_rate'].rank(ascending = True) # 距离排序 datas[name_prifix + 'distanceRank'] = datas.groupby(name)['Distance'].rank(ascending = False) datas[name_prifix + 'distanceRankAscend'] = datas.groupby(name)['Distance'].rank(ascending = True) # 领券日期排序 datas[name_prifix + 'date_receivedRank'] =datas.groupby(name)['Date_received'].rank(ascending = False) datas[name_prifix + 'date_receivedRankAscend'] =datas.groupby(name)['Date_received'].rank(ascending = True) 请帮我用groupby函数改写
时间: 2024-02-05 18:02:25 浏览: 75
Sure! 这段代码可以使用 `groupby` 函数进行改写,如下所示:
```
cols_to_rank = ['discount_rate', 'Distance', 'Date_received']
grouped = datas.groupby(name)
for col in cols_to_rank:
datas[name_prifix + col + 'Rank'] = grouped[col].rank(ascending=False)
datas[name_prifix + col + 'RankAscend'] = grouped[col].rank(ascending=True)
```
这样,我们可以避免重复代码并且更加简洁明了。
相关问题
SELECT c.stock_id, a.stock_name, a.coupon_amount, a.transaction_minimum, b.company_name, a.start_time, a.end_time, (SELECT COUNT(1) FROM user_coupon WHERE activity_id = a.id) AS total_grant, (SELECT COUNT(1) FROM user_coupon WHERE activity_id = a.id AND (status = "20" OR status = "30")) AS receive, (SELECT COUNT(1) FROM user_coupon WHERE activity_id = a.id AND status = "30") AS writeOff FROM wx_coupon a LEFT JOIN baishiof_company b ON a.company_id = b.company_id LEFT JOIN user_coupon c ON a.id = c.activity_id GROUP BY c.stock_id, a.stock_name, a.coupon_amount, a.transaction_minimum, b.company_name, a.start_time, a.end_time;以上代码存在这个问题Expression #8 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'baishiof.a.id' which is not functionally dependent on columns in GROUP BY clause; this is incompatible with sql_mode=only_full_group_by修复他
要修复这个错误,你可以使用子查询来获取每个活动的 id,并将其作为一个聚合列进行处理。这样可以解决 "Expression #8 of SELECT list is not in GROUP BY clause and contains nonaggregated column 'baishiof.a.id'" 这个错误。以下是修复后的代码示例:
```sql
SELECT
c.stock_id,
a.stock_name,
a.coupon_amount,
a.transaction_minimum,
b.company_name,
a.start_time,
a.end_time,
(SELECT COUNT(1) FROM user_coupon WHERE activity_id = a.id) AS total_grant,
(SELECT COUNT(1) FROM user_coupon WHERE activity_id = a.id AND (status = "20" OR status = "30")) AS receive,
(SELECT COUNT(1) FROM user_coupon WHERE activity_id = a.id AND status = "30") AS writeOff
FROM
wx_coupon a
LEFT JOIN
baishiof_company b ON a.company_id = b.company_id
LEFT JOIN
user_coupon c ON a.id = c.activity_id
GROUP BY
c.stock_id, a.stock_name, a.coupon_amount, a.transaction_minimum, b.company_name, a.start_time, a.end_time, a.id;
```
在上面的修复中,将 `a.id` 添加到 GROUP BY 子句中。这样可以确保每个活动的 id 在查询结果中是唯一的,并解决 "Expression #8" 的错误。
请注意,根据你的实际需求和数据库结构,你可能需要调整 GROUP BY 子句中的其他列。修复后的代码应该可以正确执行了。
#预测函数 def get_predict(datas=datasets_yc,model=model,features=['Discount_rate','Distance'],outfiles='D:/a.python/a.python算法/1期末/数据挖掘实战案例_O2O优惠劵使用预测/temp/result01.csv'): data_yc = datas[features] pre_yc = model.predict_proba(data_yc)[:,1] result = datas[['User_id','Coupon_id','Date_received']] result['probability'] = pre_yc #保存为提交所用的csv文档 result.to_csv(outfiles,index=None,header=None)
这是一个使用指定模型对指定数据集进行预测的函数,其中:
- 参数 `datas` 是一个DataFrame,包含待预测的数据;
- 参数 `model` 是一个已训练好的模型,可以对数据进行预测;
- 参数 `features` 是一个列表,表示在预测时需要使用的特征(即数据集中的列);
- 参数 `outfiles` 是一个字符串,表示预测结果要保存到的文件路径;
- 函数中使用 `model.predict_proba()` 方法对数据进行预测,并返回预测结果的概率值;
- 将预测结果与原数据集中的用户ID、优惠券ID和领取日期合并为一个新的DataFrame,并将预测结果保存为CSV文件。
阅读全文