多目标鲸鱼算法Matlab仿真

时间: 2023-11-30 21:12:55 浏览: 32
多目标鲸鱼算法(Multi-Objective Whale Optimization Algorithm,MOWOA)是一种优化算法,用于解决多目标优化问题。相较于其他优化算法,MOWOA具有更好的全局搜索能力和收敛速度。以下是一个基于Matlab的MOWOA算法的简单实现,供参考: ```matlab %% 优化问题的目标函数 function [f1, f2] = objfun(x) f1 = x(1)^2 + x(2)^2; f2 = (x(1)-1)^2 + x(2)^2; end %% 多目标鲸鱼算法实现 function x = mowoa(objfun, n, lb, ub, maxiter, popul, a, b) % 参数说明: % objfun:目标函数句柄 % n:决策变量个数 % lb:每个决策变量的下界 % ub:每个决策变量的上界 % maxiter:最大迭代次数 % popul:种群大小 % a:步长系数 % b:螺旋桨因子 % 返回值x:最优解 % 初始化种群 x = zeros(popul, n); % 每行代表一个解 for i = 1:popul x(i, :) = lb + (ub-lb).*rand(1, n); % 随机初始化解 end % 迭代优化 for iter = 1:maxiter % 计算每个解的目标函数值 f = zeros(popul, 2); for i = 1:popul [f1, f2] = objfun(x(i, :)); f(i, :) = [f1, f2]; end % 记录最优解 [~, idx] = min(sum(f, 2)); % 最优解是两个目标函数值之和最小的 xbest = x(idx, :); % 更新每个解 for i = 1:popul % 计算鲸鱼运动向量 A = 2*a*rand(1, n) - a; % 随机生成[-a, a]的步长 C = 2*rand(1, n); % 随机生成[0, 2]的控制参数 l = randn(1, n); % 随机生成正态分布的螺旋桨因子 p = rand(); % 随机生成[0, 1]的概率因子 D = abs(C.*xbest - x(i, :)); % 计算每个决策变量与最优解之间的距离 xnew = xbest - A.*D.*sign(l).*log(1./p); % 计算新解 xnew = max(xnew, lb); % 限制下界 xnew = min(xnew, ub); % 限制上界 % 根据新解的目标函数值更新最优解 [f1, f2] = objfun(xnew); if (f1 + f2) < sum(f(idx, :)) xbest = xnew; end % 更新解 x(i, :) = xnew; end end end %% 测试 n = 2; % 决策变量个数 lb = [-5, -5]; % 决策变量下界 ub = [5, 5]; % 决策变量上界 maxiter = 100; % 最大迭代次数 popul = 20; % 种群大小 a = 0.5; % 步长系数 b = 1; % 螺旋桨因子 objfun_handle = @objfun; % 目标函数句柄 x = mowoa(objfun_handle, n, lb, ub, maxiter, popul, a, b); % 输出最优解 disp('最优解:'); disp(x); ``` 请注意,这只是一个简单的实现,可以根据实际问题进行调整。此外,该代码的目标函数为一个简单的二目标函数,如果您需要求解其他复杂的多目标优化问题,需要更改目标函数的定义和计算方式。

相关推荐

解释下段代码%% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行 %% 读取数据 res = xlsread('数据集.xlsx'); %% 划分训练集和测试集% P_train = res(1: 270, 1: 12)'; T_train = res(1: 270, 13)'; M = size(P_train, 2); P_test = res(271: end, 1: 12)'; T_test = res(271: end, 13)'; N = size(P_test, 2); f_ = size(P_train, 1); % 特征维度 num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别) %% 数据转置 % P_train = P_train'; P_test = P_test'; % T_train = T_train'; T_test = T_test'; %% 数据归一化 [p_train, ps_input] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input ); t_train = T_train; t_test = T_test ; %% 转置以适应模型 p_train = p_train'; p_test = p_test'; t_train = t_train'; t_test = t_test'; %% 参数初始化 pop=5; %种群数量 Max_iter=20; % 设定最大迭代次数 dim = 2;% 维度为2,即优化两个超参数 lb = [1,1];%下边界 ub = [10,f_];%上边界 fobj = @(x) fun(x, p_train, t_train); [Best_score,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj); %开始优化 %% 提取最优参数 n_trees = round(Best_pos(1)); n_layer = round(Best_pos(2)); %% 创建模型 model = classRF_train(p_train, t_train, n_trees, n_layer); importance = model.importance; % 特征的重要性 %% 仿真测试 [T_sim1, Vote1] = classRF_predict(p_train, model); [T_sim2, Vote2] = classRF_predict(p_test , model); %% 性能评价 error1 = sum((T_sim1' == T_train)) / M * 100 ; error2 = sum((T_sim2' == T_test)) / N * 100 ;

最新推荐

APScheduler-3.0.0b2-py2.py3-none-any.whl.zip

APScheduler-3.0.0b2-py2.py3-none-any.whl.zip

apu007_automotive_kes.pdf

apu007_automotive_kes.pdf

【数据分析及可视化】大型集团企业数据分析及可视化建设方案WORD.docx

【数据分析及可视化】大型集团企业数据分析及可视化建设方案WORD.docx

智能化电子相册系统代码 java智能化电子相册系统代码

智能化电子相册系统代码 java智能化电子相册系统代码 基于SSM的智能化电子相册系统代码 1、智能化电子相册系统的技术栈、环境、工具、软件: ① 系统环境:Windows/Mac ② 开发语言:Java ③ 框架:SSM ④ 架构:B/S、MVC ⑤ 开发环境:IDEA、JDK、Maven、Mysql ⑥ JDK版本:JDK1.8 ⑦ Maven包:Maven3.6 ⑧ 数据库:mysql 5.7 ⑨ 服务平台:Tomcat 8.0/9.0 ⑩ 数据库工具:SQLyog/Navicat ⑪ 开发软件:eclipse/myeclipse/idea ⑫ 浏览器:谷歌浏览器/微软edge/火狐 ⑬ 技术栈:Java、Mysql、Maven、SSM、Mybatis、Ajax、Vue等 2、适用人群:计算机,电子信息工程等专业的学习者等, 高分毕业设计项目,也可作为课程设计和期末大作业。本资源仅是代码的压缩包,该代码适合毕业设计、课程设计作业,所有源码均经过严格测试,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! 3、解压说明:本资源需要电脑端使用WinRAR

清理docker容器日志

清理docker容器的启动日志和错误日志

MIL_STD_1364J.537.pdf

MIL_STD_1364J.537.pdf

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

hbase中时间戳的精确度和hbase中列族和列名的分隔符是什么

我已经回答了关于HBase中时间戳的精确度的问题,现在回答你的第二个问题: 在HBase中,列族和列名的分隔符是冒号(:)。例如,如果你有一个列族为“info”,列名为“name”的列,那么在HBase中的完整列名将是“info:name”。这个分隔符是在HBase的设计中被硬编码的,不能更改。这个分隔符在HBase的API中也得到了体现,例如在Java API中,可以使用“:`”来将列族和列名分隔开来,如下所示: ```java Get get = new Get(Bytes.toBytes("rowkey")); get.addColumn(Bytes.toBytes("info"),

spring boot应用启动原理分析.docx

spring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docxspring boot应用启动原理分析.docx