FP-Growth算法是如何改进Apriori算法的?FP-Growth算法的实现步骤是什么?
时间: 2024-05-23 18:14:10 浏览: 102
基于Apriopri算法和FP-growth算法的超市销售数据关联分析.rar
5星 · 资源好评率100%
FP-Growth算法是一种基于频繁项集的挖掘方法,它通过将事务数据库压缩成一棵FP树,然后在该树上进行挖掘,相比于Apriori算法,其主要优势在于减少了候选项集的生成和多次对数据库的扫描,从而提高了挖掘效率。
下面是FP-Growth算法的实现步骤:
1. 构建FP树:遍历所有事务,统计每个元素项出现的频数,只保留那些频数大于或等于最小支持度的元素项,将原始事务映射为一个项集,并按照支持度降序排列。然后遍历每个项集,按照降序排列的顺序,将每个项插入到FP树中。如果某个元素已经存在于树中,就增加它的计数值,否则就添加一个新的节点。最终的FP树中,每个节点都表示一个元素项,而每个节点的计数值表示该元素项在事务数据库中的出现次数。
2. 构建条件模式基:对于每个元素项,找到所有包含该元素项的路径,这些路径构成了该元素项的条件模式基。条件模式基可以看作是原始事务中所有包含该元素项的子集,它们的支持度相同,因此可以用来构建子FP树。
3. 递归挖掘FP树:对于每个元素项,以其为根节点,构建一个子FP树,并对该子树递归进行挖掘。具体地,在子FP树上找到所有频繁项集,然后将它们合并成更大的频繁项集。这个过程不断递归进行,直到找不到更多的频繁项集为止。
FP-Growth算法的主要思想是通过FP树来压缩事务数据库,并且避免了由Apriori算法引入的生成候选项集和扫描数据库的瓶颈,从而提高了挖掘效率。
阅读全文