使用梯度法且用matlab写一段代码关于求出以下函数的最小值并要求绘画出图像函数如下:z=x²+2xy+5y²+x-3y
时间: 2024-09-15 07:10:54 浏览: 36
机器学习中用梯度下降法实现线性回归的MATLAB源代码.rar
5星 · 资源好评率100%
梯度法是一种优化算法,用于寻找函数的局部极小点。对于给定的函数 \( z = x^2 + 2xy + 5y^2 + x - 3y \),我们可以首先计算其偏导数,即对 \( x \) 和 \( y \) 的导数,然后迭代更新 \( x \) 和 \( y \) 的值直到找到最小值。以下是使用Matlab编写的一个简单示例:
```matlab
% 定义目标函数
fun = @(x,y) x.^2 + 2*x*y + 5*y.^2 + x - 3*y;
% 初始化随机搜索点
[x0, y0] = randn(1, 2);
% 设置步长和最大迭代次数
step_size = 0.1;
max_iter = 100;
for iter = 1:max_iter
% 计算梯度
dzdx = 2*x + 2*y + 1;
dzdy = 4*y + 2*x - 3;
% 更新搜索点
dx = -dzdx * step_size;
dy = -dzdy * step_size;
% 更新新的位置
[x, y] = x + dx;
[x, y] = y + dy;
% 检查是否达到最小值或达到迭代上限
if abs(dzdx) < 1e-6 && abs(dzdy) < 1e-6
break; % 如果梯度接近0,则认为找到了局部最小值
end
% 绘制函数图像(这里假设每10次迭代绘制一次)
if mod(iter, 10) == 0
surf(x, y, fun(x, y));
xlabel('x');
ylabel('y');
zlabel('z');
drawnow;
end
end
% 输出最小值点
[min_z, min_xy] = fun(x, y);
fprintf('Minimum value found at (x, y): (%f, %f), with z = %f.\n', x, y, min_z);
```
运行此代码会逐步搜索函数的局部最小值,并在每10次迭代后显示函数的三维图像。注意这仅是一个基本的梯度下降算法,实际应用中可能需要更复杂的策略,如使用拟牛顿法或自适应学习率等。
阅读全文