extern void GPIO_interruptEdgeSelect(uint_fast8_t selectedPort, uint_fast16_t selectedPins, uint_fast8_t edgeSelect);
时间: 2024-01-21 11:04:51 浏览: 117
这是一个外部函数声明,声明了一个名为`_interruptEdgeSelect`的函数该函数用于配置GPIO口的中断触发边沿。
该函数接受三个参数:
- `selectedPort`:指定GPIO口的端口号。
- `selectedPins`:指定GPIO口的引脚号。
- `edgeSelect`:指定中断触发的边沿类型。
根据这个声明,`GPIO_interruptEdgeSelect`函数可能是一个用于配置GPIO口中断的函数。具体的实现可能在其他地方定义。
要使用这个函数,你需要确保已经包含了声明所需的头文件,并在代码中调用该函数,传递适当的参数。例如:
```c
GPIO_interruptEdgeSelect(GPIO_PORT_P1, GPIO_PIN1, GPIO_HIGH_TO_LOW_TRANSITION);
```
这个示例调用了`GPIO_interruptEdgeSelect`函数,将P1.1引脚配置为高到低的边沿触发中断。
请注意,这只是函数声明,并没有提供函数的具体实现细节。如果要使用该函数,你需要查找或提供其实际的定义或实现。
相关问题
#include "dht11.h" void Delay_us(uint16_t delay) { __HAL_TIM_DISABLE(&htim3); __HAL_TIM_SET_COUNTER(&htim3,0); __HAL_TIM_ENABLE(&htim3); uint16_t curCnt=0; while(1) { curCnt=__HAL_TIM_GET_COUNTER(&htim3); if(curCnt>=delay) break; } __HAL_TIM_DISABLE(&htim3); } void DHT11_OUT(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_IN(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } void DHT11_Strat(void) { DHT11_OUT(); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET); HAL_Delay(20); HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET); Delay_us(30); } uint8_t DHT11_Check(void) { uint8_t retry = 0 ; DHT11_IN(); while(GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry <100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} else retry = 0 ; while(GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry<100) { retry++; Delay_us(1);//1us } if(retry>=100) {return 1;} return 0 ; } uint8_t DHT11_Read_Bit(void) { uint8_t retry = 0 ; while(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry <100) { retry++; Delay_us(1); } retry = 0 ; while(GPIO_PIN_RESET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry<100) { retry++; Delay_us(1); } Delay_us(40); if(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8)) return 1; else return 0 ; } uint8_t DHT11_Read_Byte(void) { uint8_t i , dat ; dat = 0 ; for(i=0; i<8; i++) { dat <<= 1; dat |= DHT11_Read_Bit(); } return dat ; } uint8_t DHT11_Read_Data(uint8_t* temp , uint8_t* humi) { uint8_t buf[5]; uint8_t i; DHT11_Strat(); if(DHT11_Check() == 0) { for(i=0; i<5; i++) { buf[i] = DHT11_Read_Byte(); } if(buf[0]+buf[1]+buf[2]+buf[3] == buf[4]) { *humi = buf[0]; *temp = buf[2]; } }else return 1; return 0 ; } void func_1() { uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; while(1){ DHT11_Read_Data(&temperature , &humidity); sprintf((char*)aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity); HAL_UART_Transmit(&huart1, aTXbuf, strlen((const char*)aTXbuf), 200); HAL_Delay(5000); } } int temperature_humidity_device_control(protocol_package_t *pk) { printf("temperature_humidity_device_control\r\n"); if(pk->function == 0x16 && pk->data[0] == 0x00) { printf("temperature_humidity_device_control success\r\n"); uint8_t temperature = 1 ; uint8_t humidity = 1; uint8_t aTXbuf[32] ; //DHT11_Read_Data(&temperature , &humidity); pk->data[0] = 0x35; } return 0; }改错
在你提供的代码中,没有包含头文件 "main.h" 和 "stdio.h"。你需要添加这两个头文件到你的代码中,这样才能正确使用其中的函数和变量。
另外,你在调用 sprintf 函数时,第二个参数类型应该是 char*,而不是 uint8_t*。因此,你需要将 aTXbuf 声明为 char 类型数组,而不是 uint8_t 类型数组。同时,在使用 strlen 函数计算字符串长度时,应该传入一个 char* 类型的参数。
最后,你可以将 DHT11_Read_Data 函数的返回值直接返回,而不需要使用 if-else 语句判断后再返回。因为函数内部已经有了返回值,可以直接将其返回给调用者。
以下是修改后的代码:
```c
#include "main.h"
#include "stdio.h"
#include "dht11.h"
extern UART_HandleTypeDef huart1;
extern TIM_HandleTypeDef htim3;
void Delay_us(uint16_t delay) {
__HAL_TIM_DISABLE(&htim3);
__HAL_TIM_SET_COUNTER(&htim3,0);
__HAL_TIM_ENABLE(&htim3);
uint16_t curCnt=0;
while(1)
{
curCnt=__HAL_TIM_GET_COUNTER(&htim3);
if(curCnt>=delay)
break;
}
__HAL_TIM_DISABLE(&htim3);
}
void DHT11_OUT(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void DHT11_IN(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
void DHT11_Strat(void) {
DHT11_OUT();
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_RESET);
HAL_Delay(20);
HAL_GPIO_WritePin(GPIOB,GPIO_PIN_8,GPIO_PIN_SET);
Delay_us(30);
}
uint8_t DHT11_Check(void) {
uint8_t retry = 0 ;
DHT11_IN();
while(GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry <100)
{
retry++;
Delay_us(1);//1us
}
if(retry>=100)
{return 1;}
else retry = 0 ;
while(GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOB,GPIO_PIN_8) && retry<100)
{
retry++;
Delay_us(1);//1us
}
if(retry>=100)
{return 1;}
return 0 ;
}
uint8_t DHT11_Read_Bit(void) {
uint8_t retry = 0 ;
while(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry <100)
{
retry++;
Delay_us(1);
}
retry = 0 ;
while(GPIO_PIN_RESET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8) && retry<100)
{
retry++;
Delay_us(1);
}
Delay_us(40);
if(GPIO_PIN_SET==HAL_GPIO_ReadPin(GPIOB, GPIO_PIN_8)) return 1;
else return 0 ;
}
uint8_t DHT11_Read_Byte(void) {
uint8_t i , dat ;
dat = 0 ;
for(i=0; i<8; i++)
{
dat <<= 1;
dat |= DHT11_Read_Bit();
}
return dat ;
}
uint8_t DHT11_Read_Data(uint8_t* temp , uint8_t* humi) {
uint8_t buf[5];
uint8_t i;
DHT11_Strat();
if(DHT11_Check() == 0)
{
for(i=0; i<5; i++)
{
buf[i] = DHT11_Read_Byte();
}
if(buf[0]+buf[1]+buf[2]+buf[3] == buf[4])
{
*humi = buf[0];
*temp = buf[2];
return 0;
}
}
return 1;
}
void func_1() {
uint8_t temperature = 1;
uint8_t humidity = 1;
char aTXbuf[32];
while(1){
DHT11_Read_Data(&temperature , &humidity);
sprintf(aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity);
HAL_UART_Transmit(&huart1, (uint8_t*)aTXbuf, strlen(aTXbuf), 200);
HAL_Delay(5000);
}
}
int temperature_humidity_device_control(protocol_package_t *pk) {
printf("temperature_humidity_device_control\r\n");
if(pk->function == 0x16 && pk->data[0] == 0x00)
{
printf("temperature_humidity_device_control success\r\n");
uint8_t temperature = 1 ;
uint8_t humidity = 1;
char aTXbuf[32];
DHT11_Read_Data(&temperature , &humidity);
sprintf(aTXbuf,"%d , %d %% \r\n" ,temperature ,humidity);
strncpy((char*)pk->data, aTXbuf, strlen(aTXbuf));
pk->data_len = strlen(aTXbuf);
pk->data[0] = 0x35;
}
return 0;
}
```
解析代码extern __IO uint16_t ADC1_Value; extern __IO uint16_t ADC2_Value; ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; void MX_ADC1_Init(void){ ADC_ChannelConfTypeDef sConfig; hadc1.Instance = ADC1; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; if (HAL_ADC_Init(&hadc1) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); }} void MX_ADC2_Init(void){ ADC_ChannelConfTypeDef sConfig; hadc2.Instance = ADC2; hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.NbrOfConversion = 1; if (HAL_ADC_Init(&hadc2) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); } sConfig.Channel = ADC_CHANNEL_5; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { _Error_Handler(__FILE__, __LINE__); }} void HAL_ADC_MspInit(ADC_HandleTypeDef* adcHandle){ GPIO_InitTypeDef GPIO_InitStruct; if(adcHandle->Instance==ADC1) { __HAL_RCC_ADC1_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); HAL_NVIC_SetPriority(ADC1_2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(ADC1_2_IRQn); } else if(adcHandle->Instance==ADC2) { __HAL_RCC_ADC2_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_5; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); HAL_NVIC_SetPriority(ADC1_2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(ADC1_2_IRQn); }} void HAL_ADC_MspDeInit(ADC_HandleTypeDef* adcHandle){ if(adcHandle->Instance==ADC1) { __HAL_RCC_ADC1_CLK_DISABLE(); HAL_GPIO_DeInit(GPIOA, GPIO_PIN_4); } else if(adcHandle->Instance==ADC2) { __HAL_RCC_ADC2_CLK_DISABLE(); HAL_GPIO_DeInit(GPIOA, GPIO_PIN_5); }} void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadcx){ if(hadcx==&hadc1){ ADC1_Value=HAL_ADC_GetValue(hadcx);} if(hadcx==&hadc2){ ADC2_Value=HAL_ADC_GetValue(hadcx);}}
这段代码是一个使用 STM32 的 ADC(模数转换器)的程序。它初始化了两个 ADC 实例,分别为 ADC1 和 ADC2,并配置了它们的参数。其中,ADC1 的采样通道为 4,ADC2 的采样通道为 5。在初始化过程中,还对 ADC 的外部触发进行了配置。在 ADC 转换完成后,会调用 HAL_ADC_ConvCpltCallback 回调函数,将转换结果存储在 ADC1_Value 和 ADC2_Value 中。同时,该程序还定义了 HAL_ADC_MspInit 和 HAL_ADC_MspDeInit 函数,用于初始化和反初始化 ADC 的 GPIO 和 NVIC。
阅读全文