Graph Embedding I2I
时间: 2024-03-11 22:41:50 浏览: 188
Graph Embedding I2I是一种用于图嵌入的技,其中I2I代表"Instance to Instance"。它的目标是将图中的节点映射到一个低维向量空间中,以便能够捕捉节点之间的语义和结构关系。
在Graph Embedding I2I中,每个节点被表示为一个向量,这个向量可以用于计算节点之间的相似性或进行其他任务,如节点分类、链接预测等。通过将节点映射到低维向量空间,可以更方便地进行图数据的分析和处理。
Graph Embedding I2I的实现通常包括以下步骤:
1. 构建图:首先需要构建一个图,其中节点表示实体或对象,边表示它们之间的关系。可以使用现有的图数据或从原始数据中构建图。
2. 定义相似性度量:为了将节点映射到向量空间中,需要定义节点之间的相似性度量方法。常用的方法包括基于邻居节点的相似性、基于路径的相似性等。
3. 学习嵌入向量:使用机器学习算法或深度学习模型,将节点映射到低维向量空间中。这可以通过最小化节点之间的相似性差异来实现。
4. 应用嵌入向量:学习到的嵌入向量可以用于各种图分析任务,如节点分类、链接预测、社区发现等。
相关问题
解释下面这段代码: for i, edge_index in enumerate(edge_index_sets): edge_num = edge_index.shape[1] cache_edge_index = self.cache_edge_index_sets[i] if cache_edge_index is None or cache_edge_index.shape[1] != edge_num*batch_num: self.cache_edge_index_sets[i] = get_batch_edge_index(edge_index, batch_num, node_num).to(device) batch_edge_index = self.cache_edge_index_sets[i] all_embeddings = self.embedding(torch.arange(node_num).to(device)) weights_arr = all_embeddings.detach().clone() all_embeddings = all_embeddings.repeat(batch_num, 1) weights = weights_arr.view(node_num, -1) cos_ji_mat = torch.matmul(weights, weights.T) normed_mat = torch.matmul(weights.norm(dim=-1).view(-1,1), weights.norm(dim=-1).view(1,-1)) cos_ji_mat = cos_ji_mat / normed_mat dim = weights.shape[-1] topk_num = self.topk topk_indices_ji = torch.topk(cos_ji_mat, topk_num, dim=-1)[1] self.learned_graph = topk_indices_ji gated_i = torch.arange(0, node_num).T.unsqueeze(1).repeat(1, topk_num).flatten().to(device).unsqueeze(0) gated_j = topk_indices_ji.flatten().unsqueeze(0) gated_edge_index = torch.cat((gated_j, gated_i), dim=0) batch_gated_edge_index = get_batch_edge_index(gated_edge_index, batch_num, node_num).to(device) gcn_out = self.gnn_layers[i](x, batch_gated_edge_index, node_num=node_num*batch_num, embedding=all_embeddings) gcn_outs.append(gcn_out) x = torch.cat(gcn_outs, dim=1) x = x.view(batch_num, node_num, -1) indexes = torch.arange(0,node_num).to(device) out = torch.mul(x, self.embedding(indexes)) out = out.permute(0,2,1) out = F.relu(self.bn_outlayer_in(out)) out = out.permute(0,2,1) out = self.dp(out) out = self.out_layer(out) out = out.view(-1, node_num) return out
这部分代码是一个Graph Convolutional Network (GCN)的前向函数。首先,对于一个图中每个连接的边,将其变换为针对batch中所有节点的连接边。然后,对于每个节点,通过GCN层和学习到的邻居节点之间的注意力矩阵,将其信息聚合到其邻居节点上。最后,对于每个节点都会得到一个向量表示,通过与输入的向量嵌入相乘来进行特征融合。最后一步则是将所有节点的结果收集起来并且分批次处理。
class FeatureExtraction_Rolled: def __init__(self, patch_types=None, des_model_dirs=None, minu_model_dir=None): self.des_models = None self.patch_types = patch_types self.minu_model = None self.minu_model_dir = minu_model_dir self.des_model_dirs = des_model_dirs print("Loading models, this may take some time...") if self.minu_model_dir is not None: print("Loading minutiae model: " + minu_model_dir) self.minu_model = (minutiae_AEC.ImportGraph(minu_model_dir)) self.dict, self.spacing, self.dict_all, self.dict_ori, self.dict_spacing = get_maps.construct_dictionary( ori_num=24) patchSize = 160 oriNum = 64 if des_model_dirs is not None and len(des_model_dirs) > 0: self.patchIndexV = descriptor.get_patch_index(patchSize, patchSize, oriNum, isMinu=1) if self.des_model_dirs is not None: self.des_models = [] for i, model_dir in enumerate(des_model_dirs): print("Loading descriptor model (" + str(i+1) + " of " + str(len(des_model_dirs)) + "): " + model_dir) self.des_models.append(descriptor.ImportGraph(model_dir, input_name="inputs:0", output_name='embedding:0')) self.patch_size = 96
这段代码是一个名为"FeatureExtraction_Rolled"的类的初始化方法。它接受两个参数:patch_types和des_model_dirs,这些参数可以为None。在初始化过程中,它加载了一些模型,并设置了一些属性。
首先,它初始化了一个名为"self.des_models"的属性,值为None。它还初始化了一个名为"self.patch_types"的属性,值为传入的patch_types参数。接下来,它初始化了一个名为"self.minu_model"的属性,值为None,并且初始化了一个名为"self.minu_model_dir"的属性,值为传入的minu_model_dir参数。
然后,它打印出一条消息:"Loading models, this may take some time..."。如果minu_model_dir不为None,则打印出一条消息:"Loading minutiae model: " + minu_model_dir,并且使用minutiae_AEC模块加载了一个模型,将其赋值给self.minu_model属性。
接下来,它使用get_maps模块的construct_dictionary函数构建了一些字典,并将其赋值给self.dict、self.spacing、self.dict_all、self.dict_ori和self.dict_spacing属性。
然后,它设置了两个变量:patchSize为160,oriNum为64。如果des_model_dirs不为None且长度大于0,则使用descriptor模块的get_patch_index函数获取了一个名为self.patchIndexV的变量。
接着,如果des_model_dirs不为None,则初始化了一个名为self.des_models的空列表。***
阅读全文