void HC_SR04_Delayus(uint32_t usdelay) { __IO uint32_t Delay = usdelay * (SystemCoreClock / 8U /1000U/1000);//SystemCoreClock:系统频率 do { __NOP(); } while (Delay --); }

时间: 2024-04-11 20:30:24 浏览: 17
这段代码是用来实现一个微秒级别的延时函数。根据传入的延时时间(以微秒为单位),通过计算得到需要循环的次数,然后在循环中执行空操作(NOP)来实现延时。具体的计算方式是将传入的微秒数乘以系统时钟频率,然后除以8再除以1000再除以1000,得到需要循环的次数。在循环中每次循环都会执行一条空操作,直到循环次数减到0为止,从而实现了指定的延时时间。
相关问题

#define HC165_CE_0 PBout(0) #define HC165_PL_0 PAout(11) #define HC165_CP_0 PAout(12) #define HC165_Q7_0 PBin(1) #define HC165_CE_1 PBout(8) #define HC165_PL_1 PBout(6) #define HC165_CP_1 PBout(7) #define HC165_Q7_1 PBin(9) uint8_t readVoltageGroup0() { uint8_t i = 0; uint8_t temp = 0; HC165_PL_0 = 0; HC165_PL_0 = 1; if(HC165_Q7_0 == 1) temp |= 0x01; for(i = 0; i < 7; i ++) { temp = temp << 1; HC165_CP_0 = 0; delayUs(1); HC165_CP_0 = 1; if(HC165_Q7_0 == 1) temp |= 0x01; } return temp; } uint8_t readVoltageGroup1(void) { uint8_t i = 0; uint8_t temp = 0; HC165_PL_1 = 0; HC165_PL_1 = 1; if(HC165_Q7_1 == 1) temp |= 0x01; for(i = 0; i < 7; i ++) { temp = temp << 1; HC165_CP_1 = 0; delayUs(1); HC165_CP_1 = 1; if(HC165_Q7_1 == 1) temp |= 0x01; } return temp; } 如何简化这部分代码与定义

可以将HC165_CE、HC165_PL、HC165_CP、HC165_Q7定义为一个结构体或者宏定义数组,然后用readVoltage函数来代替readVoltageGroup0和readVoltageGroup1函数,并将需要传入的参数作为结构体或宏定义数组的索引,实现代码复用。同时,也可以将重复的代码提取出来,减少代码冗余。

用stm32f407和HC-SR04写一段代码测距

当使用STM32F407和HC-SR04传感器进行距离测量时,可以使用STM32的GPIO库和定时器来实现。下面是一个简单的示例代码: ```C #include "stm32f4xx.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_tim.h" // 定义超声波传感器的引脚 #define TRIG_PIN GPIO_Pin_0 #define ECHO_PIN GPIO_Pin_1 #define TRIG_PIN_SOURCE GPIO_PinSource0 #define ECHO_PIN_SOURCE GPIO_PinSource1 #define TRIG_GPIO_PORT GPIOA #define ECHO_GPIO_PORT GPIOA #define TRIG_GPIO_CLK RCC_AHB1Periph_GPIOA #define ECHO_GPIO_CLK RCC_AHB1Periph_GPIOA // 定义定时器和中断 #define TIMx TIM2 #define TIMx_IRQn TIM2_IRQn #define TIMx_RCC_CLK RCC_APB1Periph_TIM2 // 定义全局变量 volatile uint32_t start_time = 0; volatile uint32_t stop_time = 0; volatile uint32_t measured_time = 0; // 初始化GPIO和定时器 void GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct; // 使能GPIO和定时器的时钟 RCC_AHB1PeriphClockCmd(TRIG_GPIO_CLK | ECHO_GPIO_CLK, ENABLE); RCC_APB1PeriphClockCmd(TIMx_RCC_CLK, ENABLE); // 配置超声波触发引脚 GPIO_InitStruct.GPIO_Pin = TRIG_PIN; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_DOWN; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_100MHz; GPIO_Init(TRIG_GPIO_PORT, &GPIO_InitStruct); // 配置超声波回响引脚 GPIO_InitStruct.GPIO_Pin = ECHO_PIN; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(ECHO_GPIO_PORT, &GPIO_InitStruct); } // 初始化定时器 void TIM_Init(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStruct; NVIC_InitTypeDef NVIC_InitStructure; // 设置定时器的预分频和周期 TIM_TimeBaseStruct.TIM_Prescaler = (SystemCoreClock / 1000000) - 1; // 设置为1us的计数单位 TIM_TimeBaseStruct.TIM_Period = 0xFFFFFFFF; // 最大周期 TIM_TimeBaseStruct.TIM_ClockDivision = 0; TIM_TimeBaseStruct.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIMx, &TIM_TimeBaseStruct); // 配置定时器中断 NVIC_InitStructure.NVIC_IRQChannel = TIMx_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); // 清除定时器中断标志位 TIM_ClearITPendingBit(TIMx, TIM_IT_Update); // 使能定时器更新中断 TIM_ITConfig(TIMx, TIM_IT_Update, ENABLE); // 启动定时器 TIM_Cmd(TIMx, ENABLE); } // 启动测距 void StartMeasurement(void) { // 发送超声波触发信号 GPIO_SetBits(TRIG_GPIO_PORT, TRIG_PIN); DelayUs(10); GPIO_ResetBits(TRIG_GPIO_PORT, TRIG_PIN); } // 停止测距 void StopMeasurement(void) { // 记录回响信号的时间 start_time = TIM_GetCounter(TIMx); stop_time = start_time + measured_time; } // 获取距离值 float GetDistance(void) { uint32_t distance = (stop_time - start_time) / 58; // 根据声速计算距离,单位为厘米 return (float)distance; } // 延时函数,微秒级别 void DelayUs(uint32_t us) { us *= (SystemCoreClock / 1000000) / 9; while (us--) { __NOP(); } } // 定时器中断处理函数 void TIMx_IRQHandler(void) { if (TIM_GetITStatus(TIMx, TIM_IT_Update) != RESET) { measured_time = TIM_GetCounter(TIMx); TIM_ClearITPendingBit(TIMx, TIM_IT_Update); } } int main(void) { // 初始化GPIO和定时器 GPIO_Init(); TIM_Init(); while (1) { // 启动测距 StartMeasurement(); // 等待回响信号 while (GPIO_ReadInputDataBit(ECHO_GPIO_PORT, ECHO_PIN) == RESET) { // 等待回响信号的上升沿 } // 停止测距 StopMeasurement(); // 获取距离值 float distance = GetDistance(); // 输出距离值 printf("Distance: %.2f cm\n", distance); // 延时一段时间 DelayUs(1000000); // 1秒 } } ``` 这段代码通过使用STM32F407的GPIO库和定时器,实现了HC-SR04超声波传感器的距离测量。它使用定时器来计算回响信号的时间,并根据声速计算距离。在主循环中,它不断地启动测距、等待回响信号、停止测距,然后计算并输出距离值。 请确保正确连接HC-SR04传感器到STM32F407的引脚,并根据代码中的引脚定义进行配置。 希望对你有帮助!如果还有其他问题,请随时问我。

相关推荐

/** @defgroup Delay Delay * @brief Delay module driver * @ingroup UserProgram_framework * @{ */ /* Includes *******************************************************************/ #include "delay.h" #include "mcu.h" /* Private typedef ************************************************************/ /* Private constants **********************************************************/ /* Private macro **************************************************************/ /* Private variables **********************************************************/ /* Private function prototypes ************************************************/ /** ****************************************************************************** * @brief 延时微秒 函数 * @param us 范围是 (us * US_TICK) 不大于 定时器计数寄存器最大值 * @return None ****************************************************************************** */ #if DTIM_KEEP_RUN_MODE void DelayUS(u32 us) { DTIM_CNT_RANGE_TYPE tnow; DTIM_CNT_RANGE_TYPE told = DTIM_CNT_READ(); //刚进入时的计数器值 u32 ticks = us * DTIM_CNT_US_TICK; //需要的计数节拍数 DTIM_CNT_US_TICK为什么是4?? u32 tcnt = 0; //计数清零 while(tcnt < ticks) { tnow = DTIM_CNT_READ(); //读取当前计数器值 #if DTIM_INC_MODE tcnt += (DTIM_CNT_RANGE_TYPE)(tnow - told); #else tcnt += (DTIM_CNT_RANGE_TYPE)(told - tnow); #endif told = tnow; } } #else void DelayUS(u32 us) { u32 ticks = us * DTIM_CNT_US_TICK; //需要的节拍数 DTIM_CNT_VAL_WRITE(ticks); //加载计数器 DTIM_OF_CLR(); DTIM_START(); while( !DTIM_OF_READ() ); //等待时间到达 DTIM_STOP(); //停止 } #endif /** ****************************************************************************** * @brief 延时毫秒 函数 * @param ms 范围: 0 ~ 0xFFFF FFFF * @return None ****************************************************************************** */ void DelayMS(u32 ms) { while(ms--) DelayUS(1000); } /** @} end of Delay */这是什么延时思路,怎么理解,有框架吗,每个函数的原理是什么

#include "dht11.h" #define DHT11_GPIO_PORT GPIOB #define DHT11_GPIO_PIN GPIO_PIN_8 static void DHT11_DelayUs(uint32_t us) { __HAL_TIM_SET_COUNTER(&htim1, 0); while (__HAL_TIM_GET_COUNTER(&htim1) < us); } static uint8_t DHT11_ReadBit(void) { uint8_t retry = 0; while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_RESET) { if (++retry > 100) { return DHT11_TIMEOUT; } DHT11_DelayUs(1); } retry = 0; while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_SET) { if (++retry > 100) { return DHT11_TIMEOUT; } DHT11_DelayUs(1); } return GPIO_PIN_SET; } uint8_t DHT11_ReadData(DHT11_Data_TypeDef *data) { uint8_t buffer[5] = {0}; uint8_t i, j; /* 发送起始信号 */ HAL_GPIO_WritePin(DHT11_GPIO_PORT, DHT11_GPIO_PIN, GPIO_PIN_RESET); DHT11_DelayUs(18000); HAL_GPIO_WritePin(DHT11_GPIO_PORT, DHT11_GPIO_PIN, GPIO_PIN_SET); DHT11_DelayUs(40); /* 等待应答信号 */ if (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_RESET) { while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_RESET); while (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_SET); for (i = 0; i < 5; i++) { for (j = 0; j < 8; j++) { if (DHT11_ReadBit() == DHT11_TIMEOUT) { return DHT11_TIMEOUT; } DHT11_DelayUs(30); if (HAL_GPIO_ReadPin(DHT11_GPIO_PORT, DHT11_GPIO_PIN) == GPIO_PIN_SET) { buffer[i] |= (1 << (7 - j)); } } } if ((buffer[0] + buffer[1] + buffer[2] + buffer[3]) == buffer[4]) { data->Humidity = buffer[0]; data->Temperature = buffer[2]; return DHT11_OK; } else { return DHT11_ERROR; } } return DHT11_TIMEOUT; } void DHT11_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* 使能GPIOB时钟 */ __HAL_RCC_GPIOB_CLK_ENABLE(); /* 配置GPIOB8引脚为输入模式 */ GPIO_InitStruct.Pin = DHT11_GPIO_PIN; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(DHT11_GPIO_PORT, &GPIO_InitStruct); }

#define uchar unsigned char #define uint unsigned int sbit RS = P2^5;//数据/命令 sbit RW = P2^6;//读/写 sbit E = P2^7;//使能 uchar num[] = {"0123456789"}; void delayus(uint x) //延时函数 { while(x--); } void write_com(uchar com)//写命令 { RW = 0; RS = 0; E = 1; P0 = com; delayus(100); E = 0; } void write_data(uchar da)//写入数据 { RW = 0; RS = 1; E = 1; P0 = da; delayus(100); E = 0; } void init_1602() //LCD1602 初始化 { write_com(0x3c);//设定数据总线的个数4/8,显示一行/两行 write_com(0x0c);// //光标不显示 write_com(0x06);// //光标随字符右移 } void LCD_clr1602() //LCD1602 清屏 { write_com(0x01); // 对字符串清0 write_com(0x02); //对光标清0 } void goto_xy(uchar y,uchar x) //定位显示位置 { if(y == 1) write_com(x + 0x80); //定位第一行 else write_com(x + 0x80 + 0x40); //定位第二行 } void display_num(unsigned char x) //显示数字 { write_data(num[x / 10%10]); write_data(num[x % 10]); } void display_num1(unsigned int x) //显示数字 { write_data(num[x / 100 % 10]); write_data(num[x / 10 % 10]); write_data(num[x % 10]); } void display_string(uchar *p) //显示字符 { while(*p) { write_data(*p); p++; } } void display_xnum2(float x) //显示数字 { uint y,x1; y = (int)x; write_data(num[y / 10]); write_data(num[y % 10]); x1 = (int)((x -(float)y)*1000); display_string("."); write_data(num[x1 / 100 % 10]); // write_data(num[x1 / 10 % 10]); // write_data(num[x1 % 10]); } void display_xnum1(float x) //显示数字 { uint y,x1; y = (int)x; write_data(num[y / 10%10]); write_data(num[y % 10]); x1 = (int)((x -(float)y)*1000); display_string("."); write_data(num[x1 / 100 % 10]); }

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩