nn.Linear和nn.Embedding分别什么时候使用
时间: 2024-07-15 22:00:30 浏览: 190
`nn.Linear`和`nn.Embedding`是PyTorch(基于深度学习库TensorFlow)中两个常用的层,它们在神经网络的不同部分用于处理输入数据。
1. `nn.Linear`(线性层):
- 使用场景:通常用在全连接层(fully connected layer),当模型需要将前一层的向量进行线性变换,以便进行分类或回归任务时。例如,在一个多层感知机(MLP)的最后一层,或者在卷积神经网络(CNN)或循环神经网络(RNN)之后,用作输出层来产生最终的决策或预测。
- 功能描述:接受一个二维输入(batch_size, input_size),应用一个权重矩阵乘法和一个偏置向量,然后加上非线性激活函数(如ReLU、sigmoid或tanh),产生输出。
2. `nn.Embedding`(嵌入层):
- 使用场景:常用于处理词嵌入(word embeddings)或类别嵌入(categorical embeddings)。比如在自然语言处理中的文本分类、机器翻译或情感分析等任务中,每个词汇被映射到一个固定长度的向量空间。
- 功能描述:将离散的输入(通常是整数,如单词索引)转换为密集的连续向量表示。输入通常是整数数组(batch_size, sequence_length),每个元素对应一个类别或词汇的索引。它会根据预先训练好的词汇表和指定的维度(embedding_dim)生成对应的向量表示。
相关问题
class CBOW(torch.nn.Module): def __init__(self, word_size, embedding_dim): super(CBOW, self).__init__() self.embeddings = nn.Embedding(word_size, embedding_dim) self.linear1 = nn.Linear(embedding_dim, 128) self.activation_function1 = nn.ReLU() self.linear2 = nn.Linear(128, word_size) self.activation_function2 = nn.LogSoftmax(dim = -1)
这段代码定义了一个CBOW(Continuous Bag-of-Words)模型的类CBOW。CBOW模型是一种用于自然语言处理的神经网络模型。
在__init__方法中,模型的初始化操作被定义。它接受两个参数:word_size和embedding_dim。word_size表示词汇表的大小,embedding_dim表示词向量的维度。
在模型的初始化过程中,首先创建了一个Embedding层self.embeddings,它将输入的单词索引映射为词向量。Embedding层的大小为(word_size, embedding_dim),其中word_size是词汇表的大小,embedding_dim是词向量的维度。
接下来,定义了两个线性层self.linear1和self.linear2。self.linear1将词向量映射到一个大小为128的隐藏层,然后通过激活函数self.activation_function1(这里使用了ReLU)进行非线性变换。self.linear2将隐藏层的输出映射为最终的预测结果,大小为word_size。最后,通过self.activation_function2(这里使用了LogSoftmax)对预测结果进行归一化。
这样,CBOW模型的架构就定义好了,可以用于训练和预测。
解释这段代码def __init__(self): super(Discriminator, self).__init__() self.label_embedding = nn.Embedding(opt.n_classes, opt.n_classes) self.model = nn.Sequential(nn.Linear((opt.n_classes + int(np.prod(img_shape))), 512), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), nn.Linear(512, 512), nn.Dropout(0.4), nn.LeakyReLU(0.2), # TODO: 添加最后一个线性层,最终输出为一个实数 nn.Linear(512, 1) )
这是一个用于生成对抗网络(GAN)中的判别器(Discriminator)的初始化函数。GAN是一种机器学习模型,由一个生成器(Generator)和一个判别器组成,旨在生成与真实数据相似的数据。在GAN中,判别器负责判断输入的数据(真实数据或生成器生成的数据)是否为真实数据。
在这个初始化函数中,首先调用了父类的初始化函数 `super(Discriminator, self).__init__()`,之后定义了一个大小为 `opt.n_classes` 的嵌入层 `self.label_embedding`,用于将标签信息嵌入到模型中。
接下来,使用了一个包含多个线性层和激活函数的序列模型 `nn.Sequential()`,其中第一个线性层的输入大小为 `(opt.n_classes + int(np.prod(img_shape)))`,其中 `opt.n_classes` 表示标签数量,`np.prod(img_shape)` 表示真实数据的形状。后面的线性层和激活函数用于提取和学习输入数据的特征。
最后一个线性层的输出大小为1,用于输出一个实数,表示输入的数据是否为真实数据。此处的 TODO 提示需要添加一个最后一个线性层,是因为在这个代码段中,最后一个线性层还没有被添加。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)