def __init__(self,n_steps,num_units=128): super(MLPDiffusion,self).__init__() self.linears = nn.ModuleList( [ nn.Linear(2,num_units), nn.ReLU(), nn.Linear(num_units,num_units), nn.ReLU(), nn.Linear(num_units,num_units), nn.ReLU(), nn.Linear(num_units,2), ] ) self.step_embeddings = nn.ModuleList( [ nn.Embedding(n_steps,num_units), nn.Embedding(n_steps,num_units), nn.Embedding(n_steps,num_units), ] )代码的解释】
时间: 2024-02-15 19:27:55 浏览: 107
Python RuntimeError: thread.__init__() not called解决方法
这段代码定义了一个名为MLPDiffusion的类,它继承自PyTorch的nn.Module类。该类包含了三个成员变量:linears、step_embeddings和n_steps。其中,linears是一个包含四个线性层和三个ReLU激活函数的神经网络模型,用于对输入进行多层线性变换和非线性变换。step_embeddings是三个Embedding层,用于将输入的时间步编码为向量表示。n_steps是一个整数,表示输入序列的时间步数。
在MLPDiffusion类的初始化函数__init__中,首先调用了父类nn.Module的初始化函数。然后使用nn.ModuleList创建了linears和step_embeddings两个ModuleList。其中,linears包含四个线性层和三个ReLU激活函数,step_embeddings包含三个Embedding层。利用Embedding层可以将时间步的整数编码为向量表示,这里Embedding层的输出向量维度与线性层的输出向量维度相同。在这个模型中,每个Embedding层的向量维度为num_units。最后,将输入序列的时间步数n_steps作为类的成员变量。
阅读全文