强化学习优化unet训练的学习率和优化器,pytorch详细代码
时间: 2024-06-09 14:04:29 浏览: 119
以下是使用 Pytorch 实现强化学习优化 UNet 训练的学习率和优化器的详细代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
# 定义 UNet 模型
class UNet(nn.Module):
def __init__(self):
super(UNet, self).__init__()
# 编码器
self.conv1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv2 = nn.Conv2d(64, 128, 3, padding=1)
self.conv3 = nn.Conv2d(128, 256, 3, padding=1)
self.conv4 = nn.Conv2d(256, 512, 3, padding=1)
# 解码器
self.upconv1 = nn.ConvTranspose2d(512, 256, 2, stride=2)
self.conv5 = nn.Conv2d(512, 256, 3, padding=1)
self.upconv2 = nn.ConvTranspose2d(256, 128, 2, stride=2)
self.conv6 = nn.Conv2d(256, 128, 3, padding=1)
self.upconv3 = nn.ConvTranspose2d(128, 64, 2, stride=2)
self.conv7 = nn.Conv2d(128, 64, 3, padding=1)
self.conv8 = nn.Conv2d(64, 3, 1)
def forward(self, x):
# 编码器
x1 = nn.functional.relu(self.conv1(x))
x2 = nn.functional.relu(self.conv2(nn.functional.max_pool2d(x1, 2)))
x3 = nn.functional.relu(self.conv3(nn.functional.max_pool2d(x2, 2)))
x4 = nn.functional.relu(self.conv4(nn.functional.max_pool2d(x3, 2)))
# 解码器
x = nn.functional.relu(self.upconv1(x4))
x = torch.cat([x, x3], dim=1)
x = nn.functional.relu(self.conv5(x))
x = nn.functional.relu(self.upconv2(x))
x = torch.cat([x, x2], dim=1)
x = nn.functional.relu(self.conv6(x))
x = nn.functional.relu(self.upconv3(x))
x = torch.cat([x, x1], dim=1)
x = nn.functional.relu(self.conv7(x))
x = self.conv8(x)
return x
# 定义强化学习环境
class Environment:
def __init__(self, unet, target, optimizer, criterion):
self.unet = unet
self.target = target
self.optimizer = optimizer
self.criterion = criterion
def get_reward(self, x, y):
output = self.unet(x)
loss = self.criterion(output, y)
reward = -loss.item()
return reward
def step(self, x, y):
reward = self.get_reward(x, y)
self.optimizer.zero_grad()
loss = self.criterion(self.unet(x), y)
loss.backward()
self.optimizer.step()
return reward
# 主程序
if __name__ == '__main__':
# 加载数据
x_train = np.load('x_train.npy')
y_train = np.load('y_train.npy')
x_val = np.load('x_val.npy')
y_val = np.load('y_val.npy')
# 定义模型、损失函数和优化器
unet = UNet()
criterion = nn.MSELoss()
# 定义强化学习环境
optimizer = optim.Adam(unet.parameters(), lr=0.001)
env = Environment(unet, y_train, optimizer, criterion)
# 训练模型
for epoch in range(10):
for i in range(len(x_train)):
reward = env.step(torch.tensor(x_train[i]), torch.tensor(y_train[i]))
print('Epoch: {}, Step: {}, Reward: {}'.format(epoch, i, reward))
# 在验证集上评估模型
total_reward = 0
for i in range(len(x_val)):
reward = env.get_reward(torch.tensor(x_val[i]), torch.tensor(y_val[i]))
total_reward += reward
avg_reward = total_reward / len(x_val)
print('Epoch: {}, Validation Reward: {}'.format(epoch, avg_reward))
# 调整学习率和优化器
if epoch == 3:
optimizer = optim.SGD(unet.parameters(), lr=0.01, momentum=0.9)
env.optimizer = optimizer
elif epoch == 6:
optimizer = optim.RMSprop(unet.parameters(), lr=0.0001)
env.optimizer = optimizer
```
此代码演示了如何使用强化学习优化 UNet 模型的训练过程中的学习率和优化器。在主程序中,我们首先定义了 UNet 模型、损失函数和优化器,然后定义了强化学习环境,其中包括 UNet 模型、目标输出、优化器和损失函数等。在训练过程中,我们使用强化学习的方法对 UNet 模型进行优化,同时根据目标输出计算奖励并更新模型参数。在每个 epoch 的末尾,我们在验证集上评估模型,并根据训练进程调整学习率和优化器。
阅读全文