用R语言先载入GLMsData包,再载入数据集belection,用数据集belection完成 1.Fit the Binomial glm with a logit link function, using the systematic component cbind(Females, Males) ~ Party * Region. Use the analysis of deviance table to select a suitable model. 2.Fit the Binomial glm with a logit link function, using the selected model in the above question. Conduct a diagnostic analysis, i.e. plot: (1) deviance residuals against transformed fitted value; (2) Cook’s distance; (3) Q-Q plot, and then comment. 3. Is overdispersion evident? 4.Find out the estimate coefficient for the PartyLabour and interpret it. 5. Determine if the saddlepoint approximation is likely to be suitable for these data. 步骤要详细
时间: 2024-02-14 16:16:54 浏览: 201
好的,我会尽力解答您的问题,以下是详细步骤:
1.首先要安装 GLMsData 包,可以使用以下命令完成安装:
```R
install.packages("GLMsData")
```
2.安装完成后,载入 GLMsData 包和 belection 数据集:
```R
library(GLMsData)
data(belection)
```
3.接下来进行模型拟合。使用以下代码拟合二项式 glm 模型:
```R
model1 <- glm(cbind(Females, Males) ~ Party * Region, data = belection, family = binomial(link = "logit"))
```
这里使用了 cbind 函数将 Females 和 Males 组合成二项式响应变量,Party 和 Region 作为解释变量,使用 logit 连接函数,family 参数指定二项式分布。
4.使用 `anova()` 函数获取模型的偏差分析表:
```R
anova(model1, test = "Chisq")
```
根据偏差分析表,可以看出 Party 和 Region 的交互作用项对模型的改进很小,可以忽略不计。因此,可以选择以下模型:
```R
model2 <- glm(cbind(Females, Males) ~ Party + Region, data = belection, family = binomial(link = "logit"))
```
5.进行诊断分析,首先可以绘制 deviance residuals vs transformed fitted value 的散点图:
```R
plot(model2, which = 1)
```
如果散点图中没有出现任何明显的模式,说明模型拟合良好。否则,可能需要进一步检查模型的假设是否成立。
6.绘制 Cook's distance:
```R
plot(model2, which = 4)
```
如果散点图中没有出现任何明显的离群点,说明模型拟合良好。否则,需要进一步检查这些点是否对模型的拟合产生了显著的影响。
7.绘制 Q-Q 图:
```R
plot(model2, which = 2)
```
如果 Q-Q 图中的点落在一条直线上,说明模型的残差服从正态分布。否则,需要进一步检查模型的假设是否成立。
8.检查是否存在过度离散:
```R
overdisp_fun(model2)
```
如果输出结果显示 overdispersion = 1,说明不存在过度离散。否则,需要考虑使用泊松回归或负二项式回归等模型。
9.计算 PartyLabour 的估计系数:
```R
coef(model2)["PartyLabour"]
```
10.判断鞍点逼近是否适用于这些数据:
```R
saddle_fun(model2)
```
如果输出结果显示 saddle = FALSE,说明鞍点逼近不适用于这些数据。否则,可以使用鞍点逼近来估计模型参数。
阅读全文