用python语言求最长递增子序列。输入序列A=[18,17,19,6,11,21,23,15]。请编程实现求解A中最长递增子序列的动态规划算法,并分析算法时间复杂度

时间: 2023-09-05 19:07:11 浏览: 77
以下是Python实现最长递增子序列的代码: ```python def longest_increasing_subsequence(A): n = len(A) dp = [1] * n for i in range(1, n): for j in range(i): if A[j] < A[i]: dp[i] = max(dp[i], dp[j] + 1) return max(dp) A = [18, 17, 19, 6, 11, 21, 23, 15] print(longest_increasing_subsequence(A)) ``` 时间复杂度为O(n^2),其中n为序列A的长度。因为需要对每个元素都进行一次遍历,并且每次遍历需要对之前的所有元素进行比较,所以时间复杂度为O(n^2)。
相关问题

输入序列A=[18,17,19,6,11,21,23,15]。请给出序列求解A 中最长递增子序列的动态规划算法,并分析算法时间复杂度。

### 回答1: 最长递增子序列问题可以使用动态规划求解。定义dp[i]表示以A[i]结尾的最长递增子序列的长度,则有: dp[i] = max(dp[j])+1, 0<=j<i and A[j]<A[i] 其中,dp[j]表示以A[j]结尾的最长递增子序列长度。最终答案为所有dp[i]中的最大值。 根据上述状态转移方程,可以使用两重循环求解dp数组。时间复杂度为O(n^2)。 下面是Python代码实现: ```python def longest_increasing_subsequence(A): n = len(A) dp = [1] * n for i in range(1, n): for j in range(i): if A[j] < A[i]: dp[i] = max(dp[i], dp[j] + 1) return max(dp) A = [18, 17, 19, 6, 11, 21, 23, 15] print(longest_increasing_subsequence(A)) # 输出:4 ``` 在上述代码中,我们使用dp数组记录每个子问题的最优解,最后返回所有子问题中的最大值。时间复杂度为O(n^2),空间复杂度为O(n)。 ### 回答2: 动态规划算法可以用来解决最长递增子序列的问题。下面是一种基于动态规划算法的解题思路: 首先创建一个与序列A长度相同的数组dp,用来记录以每个元素结尾的最长递增子序列的长度。 初始化dp数组的所有元素为1,因为每个元素本身都构成一个长度为1的递增子序列。 针对每个元素A[i],从第一个元素A[0]开始遍历到A[i-1],若找到一个比A[i]小的元素A[j],则说明A[j]可以与A[i]组成一个递增子序列。 此时比较dp[j] + 1是否大于dp[i],若大于则更新dp[i]的值为dp[j] + 1。 遍历完整个序列A后,dp数组中的最大值即为最长递增子序列的长度。 根据以上思路,可以得到如下实现: A = [18, 17, 19, 6, 11, 21, 23, 15] n = len(A) dp = [1] * n # 初始化dp数组 for i in range(1, n): for j in range(i): if A[j] < A[i] and dp[j] + 1 > dp[i]: dp[i] = dp[j] + 1 result = max(dp) # 最长递增子序列的长度 print(result) 以上算法的时间复杂度为O(n^2),其中n为输入序列A的长度。因为需要两次循环遍历序列A,所以时间复杂度为二次方级别。 ### 回答3: 最长递增子序列(Longest Increasing Subsequence,简称LIS)是指在一个序列中找到最长的子序列,使得子序列中所有的元素按照顺序递增。 动态规划算法解决LIS问题的基本思路是维护一个dp数组,dp[i]表示以第i个元素结尾的最长递增子序列的长度。对于序列中的每个元素A[i],遍历其前面的所有元素A[j](0 ≤ j < i),如果A[j]小于A[i]且dp[j]+1大于dp[i],则更新dp[i]=dp[j]+1。最后在dp数组中找到最大值,即为最长递增子序列的长度。 对于输入序列A=[18,17,19,6,11,21,23,15],应用动态规划算法可得到dp数组为[1,1,2,1,2,3,4,2],最长递增子序列的长度为4。 算法的时间复杂度为O(n^2),其中n为序列的长度。外层循环遍历序列的每个元素,内层循环遍历每个元素之前的所有元素,因此总共需要进行n(n-1)/2次比较和更新操作。

在程序中添加函数 trace_back(),尝试通过动态规划表回溯得到原问题的解。从动态规划表中获得最长递增子序列长度 查找该值的出现位置 输出从该值往前的最长递增子序列长度个元素作为原问题解返回

以下是Python实现最长递增子序列并回溯得到原问题解的代码: ```python def longest_increasing_subsequence(A): n = len(A) dp = [1] * n pre = [-1] * n for i in range(1, n): for j in range(i): if A[j] < A[i] and dp[j] + 1 > dp[i]: dp[i] = dp[j] + 1 pre[i] = j max_len = max(dp) index = dp.index(max_len) res = [A[index]] while pre[index] != -1: index = pre[index] res.append(A[index]) res.reverse() return max_len, res A = [18, 17, 19, 6, 11, 21, 23, 15] max_len, res = longest_increasing_subsequence(A) print("最长递增子序列长度为:", max_len) print("最长递增子序列为:", res) ``` 函数`longest_increasing_subsequence`返回最长递增子序列的长度和最长递增子序列。在函数中,我们新增了一个数组`pre`用于记录每个元素在最长递增子序列中的前一个元素的下标。在求解完dp数组之后,我们可以通过回溯pre数组来得到原问题的解。 首先,我们找到最长递增子序列的最后一个元素的下标index,然后从后往前遍历pre数组,找到每个元素在最长递增子序列中的前一个元素的下标,把这个元素添加到结果数组中。最后,把结果数组翻转过来,就得到了最长递增子序列。 时间复杂度同样为O(n^2)。
阅读全文

相关推荐

最新推荐

recommend-type

详解用Python进行时间序列预测的7种方法

Python 提供了多种库和方法来进行时间序列预测,本篇将介绍七种使用 Python 进行时间序列预测的方法,以帮助你理解和应用到实际工作中。 1. **朴素法**: 朴素法是最简单的预测方法,它假设未来的值与最近的已知值...
recommend-type

Python时间序列缺失值的处理方法(日期缺失填充)

在数据分析和时间序列分析中,处理缺失值是至关重要的一步,特别是当涉及到日期时,因为时间序列数据通常要求连续性和完整性。本篇文章将探讨如何在Python中处理时间序列中的日期缺失值,即“时间序列缺失值的填充”...
recommend-type

Python中利用LSTM模型进行时间序列预测分析的实现

在Python中,时间序列预测分析是一项重要的任务,尤其在金融、商业、气象等多个领域有着广泛的应用。长短期记忆网络(LSTM)作为一种递归神经网络(RNN)的变种,特别适合处理这类数据,因为它能够捕捉序列中的长期...
recommend-type

详解基于python的全局与局部序列比对的实现(DNA)

首先,我们要明确全局序列比对的目标是找到两个序列的最长公共子序列,并确保比对覆盖了两个输入序列的全部长度。局部序列比对则仅关注两个序列中的相似部分,而不考虑整个序列。这两种方法在生物学研究中都有广泛...
recommend-type

探索zinoucha-master中的0101000101奥秘

资源摘要信息:"zinoucha:101000101" 根据提供的文件信息,我们可以推断出以下几个知识点: 1. 文件标题 "zinoucha:101000101" 中的 "zinoucha" 可能是某种特定内容的标识符或是某个项目的名称。"101000101" 则可能是该项目或内容的特定代码、版本号、序列号或其他重要标识。鉴于标题的特殊性,"zinoucha" 可能是一个与数字序列相关联的术语或项目代号。 2. 描述中提供的 "日诺扎 101000101" 可能是标题的注释或者补充说明。"日诺扎" 的含义并不清晰,可能是人名、地名、特殊术语或是一种加密/编码信息。然而,由于描述与标题几乎一致,这可能表明 "日诺扎" 和 "101000101" 是紧密相关联的。如果 "日诺扎" 是一个密码或者编码,那么 "101000101" 可能是其二进制编码形式或经过某种特定算法转换的结果。 3. 标签部分为空,意味着没有提供额外的分类或关键词信息,这使得我们无法通过标签来获取更多关于该文件或项目的信息。 4. 文件名称列表中只有一个文件名 "zinoucha-master"。从这个文件名我们可以推测出一些信息。首先,它表明了这个项目或文件属于一个更大的项目体系。在软件开发中,通常会将主分支或主线版本命名为 "master"。所以,"zinoucha-master" 可能指的是这个项目或文件的主版本或主分支。此外,由于文件名中同样包含了 "zinoucha",这进一步确认了 "zinoucha" 对该项目的重要性。 结合以上信息,我们可以构建以下几个可能的假设场景: - 假设 "zinoucha" 是一个项目名称,那么 "101000101" 可能是该项目的某种特定标识,例如版本号或代码。"zinoucha-master" 作为主分支,意味着它包含了项目的最稳定版本,或者是开发的主干代码。 - 假设 "101000101" 是某种加密或编码,"zinoucha" 和 "日诺扎" 都可能是对其进行解码或解密的钥匙。在这种情况下,"zinoucha-master" 可能包含了用于解码或解密的主算法或主程序。 - 假设 "zinoucha" 和 "101000101" 代表了某种特定的数据格式或标准。"zinoucha-master" 作为文件名,可能意味着这是遵循该标准或格式的最核心文件或参考实现。 由于文件信息非常有限,我们无法确定具体的领域或背景。"zinoucha" 和 "日诺扎" 可能是任意领域的术语,而 "101000101" 作为二进制编码,可能在通信、加密、数据存储等多种IT应用场景中出现。为了获得更精确的知识点,我们需要更多的上下文信息和具体的领域知识。
recommend-type

【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例

![【Qt与OpenGL集成】:提升框选功能图形性能,OpenGL的高效应用案例](https://img-blog.csdnimg.cn/562b8d2b04d343d7a61ef4b8c2f3e817.png) # 摘要 本文旨在探讨Qt与OpenGL集成的实现细节及其在图形性能优化方面的重要性。文章首先介绍了Qt与OpenGL集成的基础知识,然后深入探讨了在Qt环境中实现OpenGL高效渲染的技术,如优化渲染管线、图形数据处理和渲染性能提升策略。接着,文章着重分析了框选功能的图形性能优化,包括图形学原理、高效算法实现以及交互设计。第四章通过高级案例分析,比较了不同的框选技术,并探讨了构
recommend-type

ffmpeg 指定屏幕输出

ffmpeg 是一个强大的多媒体处理工具,可以用来处理视频、音频和字幕等。要使用 ffmpeg 指定屏幕输出,可以使用以下命令: ```sh ffmpeg -f x11grab -s <width>x<height> -r <fps> -i :<display>.<screen>+<x_offset>,<y_offset> output_file ``` 其中: - `-f x11grab` 指定使用 X11 屏幕抓取输入。 - `-s <width>x<height>` 指定抓取屏幕的分辨率,例如 `1920x1080`。 - `-r <fps>` 指定帧率,例如 `25`。 - `-i
recommend-type

个人网站技术深度解析:Haskell构建、黑暗主题、并行化等

资源摘要信息:"个人网站构建与开发" ### 网站构建与部署工具 1. **Nix-shell** - Nix-shell 是 Nix 包管理器的一个功能,允许用户在一个隔离的环境中安装和运行特定版本的软件。这在需要特定库版本或者不同开发环境的场景下非常有用。 - 使用示例:`nix-shell --attr env release.nix` 指定了一个 Nix 环境配置文件 `release.nix`,从而启动一个专门的 shell 环境来构建项目。 2. **Nix-env** - Nix-env 是 Nix 包管理器中的一个命令,用于环境管理和软件包安装。它可以用来安装、更新、删除和切换软件包的环境。 - 使用示例:`nix-env -if release.nix` 表示根据 `release.nix` 文件中定义的环境和依赖,安装或更新环境。 3. **Haskell** - Haskell 是一种纯函数式编程语言,以其强大的类型系统和懒惰求值机制而著称。它支持高级抽象,并且广泛应用于领域如研究、教育和金融行业。 - 标签信息表明该项目可能使用了 Haskell 语言进行开发。 ### 网站功能与技术实现 1. **黑暗主题(Dark Theme)** - 黑暗主题是一种界面设计,使用较暗的颜色作为背景,以减少对用户眼睛的压力,特别在夜间或低光环境下使用。 - 实现黑暗主题通常涉及CSS中深色背景和浅色文字的设计。 2. **使用openCV生成缩略图** - openCV 是一个开源的计算机视觉和机器学习软件库,它提供了许多常用的图像处理功能。 - 使用 openCV 可以更快地生成缩略图,通过调用库中的图像处理功能,比如缩放和颜色转换。 3. **通用提要生成(Syndication Feed)** - 通用提要是 RSS、Atom 等格式的集合,用于发布网站内容更新,以便用户可以通过订阅的方式获取最新动态。 - 实现提要生成通常需要根据网站内容的更新来动态生成相应的 XML 文件。 4. **IndieWeb 互动** - IndieWeb 是一个鼓励人们使用自己的个人网站来发布内容,而不是使用第三方平台的运动。 - 网络提及(Webmentions)是 IndieWeb 的一部分,它允许网站之间相互提及,类似于社交媒体中的评论和提及功能。 5. **垃圾箱包装/网格系统** - 垃圾箱包装可能指的是一个用于暂存草稿或未发布内容的功能,类似于垃圾箱回收站。 - 网格系统是一种布局方式,常用于网页设计中,以更灵活的方式组织内容。 6. **画廊/相册/媒体类型/布局** - 这些关键词可能指向网站上的图片展示功能,包括但不限于相册、网络杂志、不同的媒体展示类型和布局设计。 7. **标签/类别/搜索引擎** - 这表明网站具有内容分类功能,用户可以通过标签和类别来筛选内容,并且可能内置了简易的搜索引擎来帮助用户快速找到相关内容。 8. **并行化(Parallelization)** - 并行化在网站开发中通常涉及将任务分散到多个处理单元或线程中执行,以提高效率和性能。 - 这可能意味着网站的某些功能被设计成可以同时处理多个请求,比如后台任务、数据处理等。 9. **草稿版本+实时服务器** - 草稿版本功能允许用户保存草稿并能在需要时编辑和发布。 - 实时服务器可能是指网站采用了实时数据同步的技术,如 WebSockets,使用户能够看到内容的实时更新。 ### 总结 上述信息展示了一个人在个人网站开发过程中所涉及到的技术和功能实现,包括了环境配置、主题设计、内容管理和用户体验优化。从使用Nix-shell进行环境隔离和依赖管理到实现一个具有高级功能和良好用户体验的个人网站,每个技术点都是现代Web开发中的关键组成部分。
recommend-type

Qt框选功能的国际化实践:支持多语言界面的核心技术解析

![Qt框选功能的国际化实践:支持多语言界面的核心技术解析](https://opengraph.githubassets.com/1e33120fcc70e1a474ab01c7262f9ee89247dfbff9cf5cb5b767da34e5b70381/LCBTS/Qt-read-file) # 摘要 本文系统地探讨了Qt框架下多语言界面设计与国际化的实现原理和技术细节。首先介绍了Qt国际化框架的基础知识和多语言界面设计的基本原理,包括文本处理、资源文件管理、核心API的应用等。随后,文章详细阐述了设计可翻译用户界面、动态语言切换和界面更新以及测试和调试多语言界面的实践技巧。深入理解
recommend-type

内网如何运行docker pull mysql:5.7

要在内网中运行Docker的pull命令来获取MySQL 5.7镜像,可以按照以下步骤进行操作: 1. 确保在内网中的计算机上安装了Docker。 2. 打开终端或命令提示符,并使用以下命令登录到Docker镜像仓库: ```shell docker login <repository> ``` 将`<repository>`替换为MySQL镜像仓库的地址,例如`mysql`或`docker.io/mysql`。 3. 输入用户名和密码以登录到镜像仓库。 4. 使用以下命令从镜像仓库拉取MySQL 5.7镜像: ```shell docker pull <repository>/my