Traceback (most recent call last): File "d:\Users\lenovo\anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 3629, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 136, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 163, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 5198, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 5206, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: ('User_id', 'Coupon_id', 'max_date_received', 'min_date_received') The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\python相关2\任务二.py", line 251, in <module> train = get_dataset(train_history_field, train_middle_field, train_label_field) File "D:\python相关2\任务二.py", line 147, in get_dataset user_feat = get_user_feat(label_field) # 用户特征 File "D:\python相关2\任务二.py", line 69, in get_user_feat t2=t2['User_id','Coupon_id','max_date_received','min_date_received'] File "d:\Users\lenovo\anaconda3\lib\site-packages\pandas\core\frame.py", line 3505, in __getitem__ indexer = self.columns.get_loc(key) File "d:\Users\lenovo\anaconda3\lib\site-packages\pandas\core\indexes\base.py", line 3631, in get_loc raise KeyError(key) from err KeyError: ('User_id', 'Coupon_id', 'max_date_received', 'min_date_received')
时间: 2023-09-10 10:13:42 浏览: 176
这段代码运行出错了,错误提示是 KeyError,意思是字典或者 DataFrame 中没有这个 key。具体原因是在 get_user_feat 函数中调用了 t2['User_id','Coupon_id','max_date_received','min_date_received'],但是 DataFrame 对象 t2 中没有这个 key。这个错误可能是因为在调用 t2['User_id','Coupon_id','max_date_received','min_date_received'] 时,需要将 key 用中括号括起来,即 t2[['User_id','Coupon_id','max_date_received','min_date_received']]。
相关问题
Traceback (most recent call last): File "F:\pythonproject\ARIMA-GRACH\3.py", line 15, in <module> data = data.asfreq('D') File "E:\anaconda\lib\site-packages\pandas\core\frame.py", line 10517, in asfreq return super().asfreq( File "E:\anaconda\lib\site-packages\pandas\core\generic.py", line 7697, in asfreq return asfreq( File "E:\anaconda\lib\site-packages\pandas\core\resample.py", line 2096, in asfreq new_obj = obj.reindex(dti, method=method, fill_value=fill_value) File "E:\anaconda\lib\site-packages\pandas\util\_decorators.py", line 324, in wrapper return func(*args, **kwargs) File "E:\anaconda\lib\site-packages\pandas\core\frame.py", line 4804, in reindex return super().reindex(**kwargs) File "E:\anaconda\lib\site-packages\pandas\core\generic.py", line 4966, in reindex return self._reindex_axes( File "E:\anaconda\lib\site-packages\pandas\core\frame.py", line 4623, in _reindex_axes frame = frame._reindex_index( File "E:\anaconda\lib\site-packages\pandas\core\frame.py", line 4642, in _reindex_index return self._reindex_with_indexers( File "E:\anaconda\lib\site-packages\pandas\core\generic.py", line 5032, in _reindex_with_indexers new_data = new_data.reindex_indexer( File "E:\anaconda\lib\site-packages\pandas\core\internals\managers.py", line 679, in reindex_indexer self.axes[axis]._validate_can_reindex(indexer) File "E:\anaconda\lib\site-packages\pandas\core\indexes\base.py", line 4107, in _validate_can_reindex raise ValueError("cannot reindex on an axis with duplicate labels")
这是一个 ValueError 异常,提示不能在一个有重复标签的轴上重新索引。这可能是因为你的数据框中有重复的日期标签。你可以使用 `duplicated()` 方法检查日期标签是否有重复值,并使用 `drop_duplicates()` 方法删除重复的日期标签。例如:
```python
# 检查日期标签是否有重复值
print(data.index.duplicated())
# 删除重复的日期标签
data = data[~data.index.duplicated()]
```
Traceback (most recent call last): File "E:\anaconda\lib\site-packages\pandas\core\indexes\range.py", line 385, in get_loc return self._range.index(new_key) ValueError: 0 is not in range The above exception was the direct cause of the following exception: Traceback (most recent call last): File "F:\pythonproject\ARIMA-GRACH\6.py", line 34, in <module> arima_pred = arima_result.forecast()[0][0] File "E:\anaconda\lib\site-packages\pandas\core\series.py", line 958, in __getitem__ return self._get_value(key) File "E:\anaconda\lib\site-packages\pandas\core\series.py", line 1069, in _get_value loc = self.index.get_loc(label) File "E:\anaconda\lib\site-packages\pandas\core\indexes\range.py", line 387, in get_loc raise KeyError(key) from err KeyError: 0
这个错误是由于 `test_ts` 的索引从0开始,而 `pd.Series([test_ts[i]], index=[test_ts.index[i]-1])` 中的 `index` 参数是从-1开始的,导致索引对不上。你可以将 `index` 参数修改为从0开始的,如下所示:
```
arima_result = arima_result.append(pd.Series([test_ts[i]], index=[test_ts.index[i]]))
garch_result = garch_result.append(pd.Series([arima_result.resid[-1]], index=[test_ts.index[i]]))
```
另外,如果你想要使用 ARIMA-GARCH 模型对时间序列进行预测,你还需要实现 GARCH 模型部分的代码。具体实现方式可以参考下面的代码:
```
from arch import arch_model
# 训练 GARCH 模型
garch_model = arch_model(train_ts, p=1, q=1)
garch_result = garch_model.fit(update_freq=5).forecast(horizon=len(test_ts), reindex=False)
arima_model = ARIMA(train_ts, order=(1, 1, 1))
arima_result = arima_model.fit()
pred_ts = []
for i in range(len(test_ts)):
# 预测ARIMA模型的下一个值
arima_pred = arima_result.forecast()[0][0]
# 使用GARCH模型计算方差
var = garch_result.forecast(horizon=1).variance.iloc[-1, 0]
# 计算标准差
std = np.sqrt(var)
# 计算置信区间
conf_int = (arima_pred - 1.96 * std, arima_pred + 1.96 * std)
# 将预测结果添加到列表中
pred_ts.append(arima_pred)
# 将预测结果添加到模型中
arima_result = arima_result.append(pd.Series([test_ts[i]], index=[test_ts.index[i]]))
garch_result = garch_result.append(pd.Series([arima_result.resid[-1]], index=[test_ts.index[i]]))
```
阅读全文