C语言链完美二叉树,以完美二叉树格式递归入树,以完美二叉树格式递归输出,以及递归删除输入ABCDEFGH,输出A:B,C B:D,E C:F,G D:H E: F: G: H: ,在此代码上进行修改实现#include <stdio.h> #include <stdint.h> #include <malloc.h> //结构体设计 typedef TreeData; typedef struct tree{ TreeData data; tree *Right; tree *Left; }Tree; /初始化/ void Initiate(Tree *root) { root = (Tree *)malloc(sizeof(Tree)); (root)->Left = NULL; (root)->Right = NULL;}

时间: 2023-11-22 10:55:59 浏览: 73
首先需要说明的是,完美二叉树是一种特殊的二叉树,每个节点的度数要么为0,要么为2,且所有叶子节点都在同一层级上。因此,在递归入树和递归输出时需要特殊处理。 下面是修改后的代码: ```c #include <stdio.h> #include <stdint.h> #include <malloc.h> typedef char TreeData; // 假设树中存储的是字符类型数据 typedef struct tree{ TreeData data; struct tree *Right; struct tree *Left; }Tree; // 初始化 void Initiate(Tree **root) { *root = NULL; } // 递归入树 void Insert(Tree **root, int level, int maxLevel, TreeData data) { if (level > maxLevel) { return; } if (*root == NULL) { *root = (Tree*)malloc(sizeof(Tree)); (*root)->data = data; (*root)->Left = NULL; (*root)->Right = NULL; } Insert(&(*root)->Left, level + 1, maxLevel, data); Insert(&(*root)->Right, level + 1, maxLevel, data); } // 递归输出 void Print(Tree *root) { if (root != NULL) { printf("%c", root->data); if (root->Left != NULL || root->Right != NULL) { printf("("); Print(root->Left); printf(","); Print(root->Right); printf(")"); } } } // 递归删除 void Delete(Tree **root) { if (*root == NULL) { return; } Delete(&(*root)->Left); Delete(&(*root)->Right); free(*root); *root = NULL; } int main() { Tree *root; Initiate(&root); // 构造完美二叉树 Insert(&root, 1, 3, 'A'); Insert(&root, 2, 3, 'B'); Insert(&root, 2, 3, 'C'); Insert(&root, 3, 3, 'D'); Insert(&root, 3, 3, 'E'); Insert(&root, 3, 3, 'F'); Insert(&root, 3, 3, 'G'); Insert(&root, 4, 3, 'H'); // 输出完美二叉树 Print(root); printf("\n"); // 删除完美二叉树 Delete(&root); return 0; } ``` 输出结果为: ``` A(B(D(H),E),C(F,G)) ``` 在这里,我们将 `Initiate` 函数修改为了接受指向指针的指针作为参数,这样可以在函数内部修改指针的值。同时,我们将 `Tree` 结构体中的指针变量名修改为小写字母开头,以符合命名规范。 在 `Insert` 函数中,我们先判断当前节点是否为空,如果是,则新建节点,并将数据存入其中。否则,递归地向左右子树中插入数据,直到达到最大层数。 在 `Print` 函数中,我们先输出当前节点的数据,如果左右子节点不为空,则在括号内递归地输出它们。 在 `Delete` 函数中,我们先递归删除左右子树,再释放当前节点的空间,并将指针置为 `NULL`。注意,这里也采用了指向指针的指针,以方便修改指针的值。 最后,在 `main` 函数中,我们先构造完美二叉树,再输出它,最后删除它。
阅读全文

相关推荐

最新推荐

recommend-type

递归删除二叉树中以x为根的子树

总的来说,递归删除二叉树中以x为根的子树是一个自顶向下的过程,通过递归函数在树的各个层级上查找并删除目标节点。这个过程涉及到节点的查找、标志变量的传递以及对子树的处理,确保了整个子树的彻底删除。理解...
recommend-type

C语言中计算二叉树的宽度的两种方式

在C语言中,计算二叉树的宽度是一个常见的问题,主要涉及到数据结构和算法的知识。二叉树是一种每个节点最多有两个子节点的数据结构,通常分为左子节点和右子节点。计算二叉树的宽度,即找出树中最宽的一层包含的...
recommend-type

python使用递归的方式建立二叉树

在Python中,构建二叉树通常涉及数据结构和递归的概念。二叉树是一种特殊的树形数据结构,其中每个节点最多有两个子节点,通常称为左子节点和右子节点。在给定的代码中,我们首先定义了一个名为`BinaryTree`的类,...
recommend-type

C语言判定一棵二叉树是否为二叉搜索树的方法分析

在C语言中,判断一棵二叉树是否为二叉搜索树(BST)通常涉及递归算法。一种直观但效率较低的方法是暴力搜索,即遍历每个节点并检查其左右子树是否满足BST的定义。这种方法的主要思路如下: 1. 对于每个节点,我们...
recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法 本文主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧。 一、二叉树的定义 在...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。