time_zone = tf.timezone_at(lng=float, lat=lat_all[i])
时间: 2024-09-11 19:08:38 浏览: 85
`tf.timezone_at` 函数似乎是您引用的一个特定功能,但从常规的编程知识来看,这并不是一个标准的或广泛认可的函数。通常,时区的查询是基于地理位置的经纬度来确定的,但这种功能需要具体的实现代码或第三方库支持。
在Python中,如果你要处理时区信息,通常会使用`pytz`库或者内置的`zoneinfo`模块(在Python 3.9及以上版本中可用)。例如,`pytz`库提供了根据城市名来获取时区的功能,而`zoneinfo`可以用来获取操作系统上的时区数据。
例如,使用`pytz`库来获取时区可能看起来像这样:
```python
import pytz
from pytz import timezone
# 假设已经有一个经纬度坐标
lng = float('-118.2437') # 洛杉矶的经度
lat = float('34.0522') # 洛杉矶的纬度
# 将经纬度转换为城市名或其他地理位置标识符
# 这里需要一个自定义的转换函数或服务来实现这一点
# 假设我们已经获得了城市名 'America/Los_Angeles'
timezone_at_los_angeles = timezone('America/Los_Angeles')
# 现在可以使用这个时区对象来获取当前时间等操作
current_time = datetime.now(timezone_at_los_angeles)
```
如果你是指的`tf`是某个特定库中的函数,例如TensorFlow,那么请参考该库的官方文档以获得正确的使用方法和上下文。
相关问题
优化这段代码:import math # 定义一个测试栅格划的经纬度 test_lon = 114 test_lat = 22.5 # 划定栅格划分范围 min_lon = 113.75194 max_lon = 114.624187 min_lat = 22.447837 max_lat = 22.864748 # 定义栅格大小(单位m) accuracy = 500 # 计算栅格的经纬度增加量大小 delta_lon = accuracy * 360 / (2 * math.pi * 6371004 * math.cos((min_lat + max_lat) * math.pi / 360)) delta_lat = accuracy * 360 / (2 * math.pi * 6371004) # 计算栅格的经纬度编号 lon_col = (test_lon - (min_lon - delta_lon / 2)) // delta_lon lat_col = (test_lat - (min_lat - delta_lat / 2)) // delta_lat # 计算栅格的中心点经纬度 half_delta_lon = delta_lon / 2 half_delta_lat = delta_lat / 2 hb_lon = lon_col * delta_lon + min_lon - half_delta_lon hb_lat = lat_col * delta_lat + min_lat - half_delta_lat print(lon_col, lat_col, hb_lon, hb_lat, delta_lon, delta_lat)
这段代码的目的是将给定的经纬度划分到以 `accuracy` 为大小的栅格中,然后计算出栅格的中心点经纬度。以下是一些代码优化的建议:
1. 可以将常用的参数值保存在变量中,以便多次使用。例如,可以将栅格划分范围和栅格大小保存在变量中,然后在计算经纬度增量和栅格编号时使用这些变量。
2. 可以使用更具描述性的变量名,以便更容易理解代码的功能。例如,可以将 `lon_col` 改为 `longitude_index`,将 `hb_lon` 改为 `center_longitude`。
3. 可以使用更简洁的语法来计算经纬度增量和栅格编号。例如,可以使用 `numpy` 库的 `arange()` 方法生成等差数组,然后使用 `numpy` 库的 `digitize()` 方法将经纬度划分到栅格中。
4. 可以使用文档字符串来解释代码的功能和参数,以便更易读和维护。
下面是优化后的代码示例:
```
import math
import numpy as np
# 设置常用参数
min_longitude = 113.75194
max_longitude = 114.624187
min_latitude = 22.447837
max_latitude = 22.864748
accuracy = 500
def get_grid_center_point(lon, lat, accuracy):
"""
将给定的经纬度划分到以accuracy为大小的栅格中,然后计算出栅格的中心点经纬度。
:param lon: 经度
:param lat: 纬度
:param accuracy: 栅格大小(单位m)
:return: 栅格中心点的经纬度
"""
# 计算栅格的经纬度增加量大小
delta_lon = accuracy * 360 / (2 * math.pi * 6371004 * math.cos((min_latitude + max_latitude) * math.pi / 360))
delta_lat = accuracy * 360 / (2 * math.pi * 6371004)
# 计算栅格的经纬度编号
longitude_index = np.arange(min_longitude, max_longitude, delta_lon)
latitude_index = np.arange(min_latitude, max_latitude, delta_lat)
lon_col = np.digitize(lon, longitude_index) - 1
lat_col = np.digitize(lat, latitude_index) - 1
# 计算栅格的中心点经纬度
half_delta_lon = delta_lon / 2
half_delta_lat = delta_lat / 2
center_longitude = lon_col * delta_lon + min_longitude - half_delta_lon
center_latitude = lat_col * delta_lat + min_latitude - half_delta_lat
return center_longitude, center_latitude
# 调用函数计算栅格中心点经纬度
test_lon = 114
test_lat = 22.5
center_lon, center_lat = get_grid_center_point(test_lon, test_lat, accuracy)
# 打印结果
print(center_lon, center_lat)
```
使用 `numpy` 库的 `arange()` 方法生成等差数组,然后使用 `numpy` 库的 `digitize()` 方法将经纬度划分到栅格中,从而使代码更简洁和易读。同时,添加了文档字符串来解释函数的功能和参数。
years = np.arange(1979, 2020, 1) year_str = [str(i) for i in years] x_min = 70 x_max = 140 y_min = 10 y_max = 55 grid_lon = np.arange(x_min, x_max+1, 1.0) grid_lat = np.arange(y_min, y_max+1, 1.0) nyears = years.shape[0] nlon = grid_lon.shape[0] nlat = grid_lat.shape[0] total_grid_data = np.zeros((nyears, nlat, nlon), dtype=float) i = 0 for year in year_str: f_path = r'E:\gra_thesis\sum_pre_data_new/AMJ_pre_data/'+year+'_AMJ_sumPre.xlsx' df = pd.read_excel(f_path) df = df.dropna(axis=0) lon = df['X'] lat = df['Y'] data= df['总降水量'] Krin = pykrige.OrdinaryKriging(lon, lat, data, variogram_model="gaussian", nlags=6) grid_data, ssl = Krin.execute('grid', grid_lon, grid_lat) grid_data = np.array(grid_data) total_grid_data[i, :, :] = grid_data i = i + 1 # %% # # save data data_nc = xr.Dataset( { "precip":(("time", "lat","lon"), total_grid_data) }, coords={ "time":years, "lat":grid_lat, "lon":grid_lon, } ) data_nc.attrs["long_name"] = "total_grid_precip" data_nc.to_netcdf("E:"+"JJA_pre_total_precip.nc") 解释这段代码i
这段代码是用于读取地理数据,并对其进行插值,得到一个三维数组。years变量存储了年份序列,year_str变量是将年份序列转换为字符串序列。grid_lon变量和grid_lat变量分别是经度和纬度序列。nyears、nlon和nlat是计算数组维度的变量。total_grid_data是三维数组,用于存储地理数据的插值结果。代码使用了pykrige包进行插值,其中OrdinaryKriging()函数是调用普通克里金插值方法进行计算,variogram_model指定了变异函数的类型,nlags是变异函数的参数。for循环逐个读取每个年份的数据,同时将插值结果存储在total_grid_data中。最终代码的结果是得到了一个三维数组,其中每个元素值是地理数据的插值结果。
阅读全文