torch.normal函数中requires_grad=True

时间: 2024-05-26 07:16:28 浏览: 16
在PyTorch中,`requires_grad=True`指示张量需要计算梯度。这意味着当我们应用反向传播算法计算损失函数相对于该张量的梯度时,PyTorch将会跟踪张量的操作并计算梯度。在使用梯度下降等优化算法训练神经网络时,这非常有用。`torch.normal()`函数返回一个张量,如果我们想要计算该张量的梯度,则需要将`requires_grad`设置为True。
相关问题

解释此代码import torch import random def data_iter(batch_size,features,labels): num_examples = len(features) indices = list(range(num_examples)) random.shuffle(indices) for i in range(0,num_examples,batch_size): batch_indices = torch.tensor(indices[i:min(i+batch_size,num_examples)]) yield features[batch_indices],labels[batch_indices] w = torch.normal(0,0.01,size=(p,1),requires_grad=True) b = torch.zeros(1,requires_grad=True) for epoch in range(num_epochs): for X,y in data_iter(batch_size,features,labels): y_hat = X @ w + b loss = ((y_hat-y)**2/2).mean() loss.backward() for param in [w,b]: param -= learning_rate * param.grad param.grad.zero_()

这段代码实现了一个简单的线性回归训练过程。让我们逐行解释代码的功能: 1. 导入torch库和random库:导入了PyTorch库用于张量操作和计算图,以及random库用于随机化数据顺序。 2. 定义data_iter函数:这是一个生成器函数,用于生成以指定批次大小进行迭代的数据。它接收特征(features)和标签(labels),并根据每个批次的大小将数据进行随机打乱,并返回一个批次的特征和标签。 3. 定义模型参数:使用torch.normal函数初始化了参数w和b。w是一个服从均值为0,标准差为0.01的正态分布的随机张量,形状为(p, 1),其中p是特征的数量。b是一个形状为(1,)的零张量。requires_grad=True表示需要计算梯度。 4. 训练过程:使用两个嵌套的循环进行训练。外层循环控制迭代次数,由变量num_epochs决定。内层循环通过调用data_iter函数来获取一个批次的特征X和标签y。 5. 前向传播:计算预测值y_hat,利用矩阵乘法运算`X @ w`得到预测值,并加上偏置b。 6. 计算损失:计算均方差损失函数,即预测值和实际值之间的差的平方的平均值。 7. 反向传播:通过调用loss.backward()计算损失相对于模型参数的梯度。 8. 参数更新:利用梯度下降法,通过`param -= learning_rate * param.grad`更新模型参数w和b,其中learning_rate是学习率。 9. 清零梯度:通过调用`param.grad.zero_()`将梯度清零,以便在下一次迭代中计算新的梯度。 这段代码实现了一个简单的线性回归训练过程,每个批次的数据是随机打乱的。通过多次迭代更新模型参数,可以逐步优化模型以拟合给定的特征和标签数据。

人工构造的数据集如下: import torch import matplotlib.pyplot as plt n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) 请用python从0实现logistic回归(只借助Tensor和Numpy相关的库)

要使用 Python 从零实现逻辑回归,只借助 Tensor 和 NumPy 相关的库,可以按照以下步骤进行操作: 1. 导入所需的库: ```python import numpy as np import torch ``` 2. 准备数据: ```python n_data = torch.ones(50, 2) x1 = torch.normal(2 * n_data, 1) y1 = torch.zeros(50) x2 = torch.normal(-2 * n_data, 1) y2 = torch.ones(50) x = torch.cat((x1, x2), 0).type(torch.FloatTensor) y = torch.cat((y1, y2), 0).type(torch.FloatTensor) ``` 3. 定义模型参数: ```python w = torch.randn(2, 1, requires_grad=True) # 权重参数 b = torch.zeros(1, requires_grad=True) # 偏置参数 ``` 4. 定义模型和损失函数: ```python def logistic_regression(x): return torch.sigmoid(torch.mm(x, w) + b) def cross_entropy(y_pred, y): return -torch.mean(y * torch.log(y_pred) + (1 - y) * torch.log(1 - y_pred)) ``` 5. 定义优化器和训练模型: ```python lr = 0.01 # 学习率 num_epochs = 1000 # 迭代次数 for epoch in range(num_epochs): # 前向传播 y_pred = logistic_regression(x) loss = cross_entropy(y_pred, y) # 反向传播和优化 loss.backward() # 计算梯度 with torch.no_grad(): w -= lr * w.grad # 更新权重参数 b -= lr * b.grad # 更新偏置参数 w.grad.zero_() # 清零梯度 b.grad.zero_() # 清零梯度 if (epoch+1) % 100 == 0: print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item())) ``` 6. 使用模型进行预测: ```python with torch.no_grad(): y_pred = logistic_regression(x) predicted = (y_pred >= 0.5).float() print('Predicted:', predicted) ``` 7. 可视化结果: ```python plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=predicted.numpy().flatten(), s=100, lw=0, cmap='RdYlGn') plt.show() ``` 这样就完成了从零实现逻辑回归的过程。请注意,这里使用了 PyTorch 的自动求导功能来计算梯度,并且使用了 NumPy 进行数据可视化。

相关推荐

最新推荐

recommend-type

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示(毕业设计&课程设计)

基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 基于SpringMVC+Hibernate+AngularJs前后端分离的选课系统+源码+文档+界面展示,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用~ 项目简介: 本选课系统开源协议基于GPL协议,仅用作交流学习用途。 本系统采用了前后端分离的开发模式,后端采用Springmvc+Hibernate框架。 前端使用AngularJs+JQuery+Bootstrap开发,并且使用前端构建工具Gulp。
recommend-type

51单片机模拟汽车左右转向灯控制系统的源代码和仿真电路

免费开源《基于51单片机的模拟汽车左右转向灯控制系统》的源代码和仿真电路,含c程序源码、Proteus仿真电路。 //功能:汽车左右转向灯程序 #include <REGX51.H> //包含头文件REGX51.H sbit LEDL1=P0^0; //定义P0.0引脚位名称为LEDL1,左前转向灯 sbit LEDL2=P0^1; //定义P0.1引脚位名称为LEDL2,左后转向灯 sbit LEDR1=P0^2; //定义P0.2引脚位名称为LEDR1,右前转向灯 sbit LEDR2=P0^3; //定义P0.3引脚位名称为LEDR2,右后转向灯 sbit S1=P1^0; //定义P1.0引脚位名称为S1,S1为0,左转向灯闪烁 sbit S2=P1^1; //定义P1.1引脚位名称为S2,S2为0,右转向灯闪烁 //函数名:delay //函数功能:实现软件延时 //形式参数:无符号整型变量i //返回值:无 void delay(unsigned int i) { wh
recommend-type

windows hot key

windows 下常用的热键脚本配置
recommend-type

51CTO学院-《Java编程思想》精讲视频教程(上部).docx

51CTO学院-《Java编程思想》精讲视频教程(上部).docx
recommend-type

JAVA2课程教学大纲.doc

JAVA2课程教学大纲.doc
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。