df.columns = df.loc[0,:].tolist()
时间: 2024-06-14 08:08:04 浏览: 185
df.columns = df.loc[0,:].tolist() 是一行代码,用于将DataFrame的列名设置为DataFrame中第一行的值。具体来说,它的作用是将df的列名设置为df中第一行的值,并且将这些值转换为列表形式。
这行代码的执行步骤如下:
1. df.loc[0,:] 用于选取DataFrame中的第一行数据。
2. .tolist() 将选取的第一行数据转换为列表形式。
3. df.columns = 将DataFrame的列名设置为后面的值。
这样,执行完这行代码后,DataFrame的列名就会被更新为第一行的值。
相关问题
优化代码 def cluster_format(self, start_time, end_time, save_on=True, data_clean=False, data_name=None): """ local format function is to format data from beihang. :param start_time: :param end_time: :return: """ # 户用簇级数据清洗 if data_clean: unused_index_col = [i for i in self.df.columns if 'Unnamed' in i] self.df.drop(columns=unused_index_col, inplace=True) self.df.drop_duplicates(inplace=True, ignore_index=True) self.df.reset_index(drop=True, inplace=True) dupli_header_lines = np.where(self.df['sendtime'] == 'sendtime')[0] self.df.drop(index=dupli_header_lines, inplace=True) self.df = self.df.apply(pd.to_numeric, errors='ignore') self.df['sendtime'] = pd.to_datetime(self.df['sendtime']) self.df.sort_values(by='sendtime', inplace=True, ignore_index=True) self.df.to_csv(data_name, index=False) # 调用基本格式化处理 self.df = super().format(start_time, end_time) module_number_register = np.unique(self.df['bat_module_num']) # if registered m_num is 0 and not changed, there is no module data if not np.any(module_number_register): logger.logger.warning("No module data!") sys.exit() if 'bat_module_voltage_00' in self.df.columns: volt_ref = 'bat_module_voltage_00' elif 'bat_module_voltage_01' in self.df.columns: volt_ref = 'bat_module_voltage_01' elif 'bat_module_voltage_02' in self.df.columns: volt_ref = 'bat_module_voltage_02' else: logger.logger.warning("No module data!") sys.exit() self.df.dropna(axis=0, subset=[volt_ref], inplace=True) self.df.reset_index(drop=True, inplace=True) self.headers = list(self.df.columns) # time duration of a cluster self.length = len(self.df) if self.length == 0: logger.logger.warning("After cluster data clean, no effective data!") raise ValueError("No effective data after cluster data clean.") self.cluster_stats(save_on) for m in range(self.mod_num): print(self.clusterid, self.mod_num) self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])
Here are some possible optimizations for the given code:
1. Instead of using a list comprehension to find columns with 'Unnamed' in their names, you can use the `filter()` function along with a lambda function to achieve the same result in a more concise way:
```
unused_index_col = list(filter(lambda x: 'Unnamed' in x, self.df.columns))
```
2. Instead of dropping duplicates and resetting the index separately, you can use the `drop_duplicates()` function with the `ignore_index` parameter set to `True` to achieve both in one step:
```
self.df.drop_duplicates(inplace=True, ignore_index=True)
```
3. Instead of using `sys.exit()` to terminate the program when there is no module data, you can raise a `ValueError` with an appropriate error message:
```
raise ValueError("No module data!")
```
4. Instead of using a series of `if` statements to find the voltage reference column, you can use the `loc` accessor with a boolean mask to select the first column that starts with 'bat_module_voltage':
```
volt_ref_col = self.df.columns[self.df.columns.str.startswith('bat_module_voltage')][0]
```
5. Instead of using a loop to append a single item to a list, you can use the `append()` method directly:
```
self.module_list.append(np.unique(self.df[f'bat_module_sn_{str(m).zfill(2)}'].dropna())[0])
```
By applying these optimizations, the code can become more concise and efficient.
import numpy as np from datetime import datetime, timedelta import pandas as pd test = pd.read_excel("C:\\Users\\1data\\Desktop\\DBM成本收入核算\\test.xlsx") start_date = pd.to_datetime(test['合同开始日期']) end_date = pd.to_datetime(test['合同截止日期']) test['合同周期月数'] = round((end_date - start_date) / np.timedelta64(1, 'M')) start_date_col = '合同开始日期' end_date_col = '合同截止日期' new_col = '日期' for index, row in test.iterrows(): start_date = pd.to_datetime(row[start_date_col]) end_date = pd.to_datetime(row[end_date_col]) date_list = [] if start_date.day <= 15: while start_date <= end_date: date_list.append(start_date) start_date = start_date + timedelta(days=30) else: start_date = start_date + timedelta(days=30) while start_date <= end_date + timedelta(days=30): date_list.append(start_date) start_date = start_date + timedelta(days=30) test.loc[index, new_col] = ','.join([str(date.date()) for date in date_list]) df_tmp=test['日期'].str.split(',',expand=True) df_tmp=df_tmp.stack() df_tmp = df_tmp.reset_index(level=1,drop=True) df_tmp.name='日期' df_new = test.drop(['日期'], axis=1).join(df_tmp).reset_index().drop(columns='index') print(df_new) df_new.to_excel('income_test.xlsx',index=False) 将这段代码导出的excel中合同开始日期字段不显示时分秒且新增日期字段的取年月的字段合同周期年月
要将导出的 Excel 中的合同开始日期字段只显示年月日,可以使用 pandas 的 to_datetime 方法中的 strftime 函数将日期格式化为字符串再导出到 Excel 中。修改代码如下:
```
import numpy as np
from datetime import datetime, timedelta
import pandas as pd
test = pd.read_excel("C:\\Users\\1data\\Desktop\\DBM成本收入核算\\test.xlsx")
start_date = pd.to_datetime(test['合同开始日期'])
end_date = pd.to_datetime(test['合同截止日期'])
test['合同周期月数'] = round((end_date - start_date) / np.timedelta64(1, 'M'))
start_date_col = '合同开始日期'
end_date_col = '合同截止日期'
new_col = '日期'
for index, row in test.iterrows():
start_date = pd.to_datetime(row[start_date_col])
end_date = pd.to_datetime(row[end_date_col])
date_list = []
if start_date.day <= 15:
while start_date <= end_date:
date_list.append(start_date)
start_date = start_date + timedelta(days=30)
else:
start_date = start_date + timedelta(days=30)
while start_date <= end_date + timedelta(days=30):
date_list.append(start_date)
start_date = start_date + timedelta(days=30)
# 格式化日期字符串为年月日
date_str_list = [date.strftime('%Y-%m-%d') for date in date_list]
test.loc[index, new_col] = ','.join(date_str_list)
# 将日期字段拆分为多列
df_tmp = test['日期'].str.split(',', expand=True)
df_tmp = df_tmp.stack()
df_tmp = df_tmp.reset_index(level=1, drop=True)
df_tmp.name = '日期'
# 将拆分后的日期列与原始 DataFrame 合并
df_new = pd.concat([test.drop(['日期'], axis=1), df_tmp], axis=1)
df_new = df_new.reset_index().drop(columns='index')
# 计算合同周期年月
df_new['合同周期年月'] = df_new['合同周期月数'].apply(lambda x: f"{int(x//12)}年{int(x%12)}月")
# 导出到 Excel
df_new.to_excel('income_test.xlsx', index=False)
```
这样导出的 Excel 文件中的合同开始日期字段只显示年月日,而新增日期字段的取年月的字段合同周期年月也被计算出来了。
阅读全文