以下代码主要功能:class Community(): ''' use set operation to optimize calculation ''' def init(self,G,alpha=1.0): self._G = G self._alpha = alpha self._nodes = set() self._k_in = 0 self._k_out = 0 def cal_add_fitness(self,node): neighbors = set(self._G.neighbors(node)) old_k_in = self._k_in old_k_out = self._k_out vertex_k_in = len(neighbors & self._nodes) vertex_k_out = len(neighbors) - vertex_k_in new_k_in = old_k_in + 2*vertex_k_in new_k_out = old_k_out + vertex_k_out-vertex_k_in new_fitness = new_k_in/(new_k_in+new_k_out)**self._alpha old_fitness = old_k_in/(old_k_in+old_k_out)**self._alpha return new_fitness-old_fitness def cal_remove_fitness(self,node): neighbors = set(self._G.neighbors(node)) new_k_in = self._k_in new_k_out = self._k_out node_k_in = len(neighbors & self._nodes) node_k_out = len(neighbors) - node_k_in old_k_in = new_k_in - 2*node_k_in old_k_out = new_k_out - node_k_out + node_k_in old_fitness = old_k_in/(old_k_in+old_k_out)**self._alpha new_fitness = new_k_in/(new_k_in+new_k_out)**self._alpha return new_fitness-old_fitness def recalculate(self): for vid in self._nodes: fitness = self.cal_remove_fitness(vid) if fitness < 0.0: return vid return None
时间: 2023-06-26 10:06:33 浏览: 101
这段代码定义了一个名为 Community 的类,主要用于社区发现算法中的节点聚类。其中包含以下方法:
- init() :初始化类,设定初始参数。
- cal_add_fitness() :计算将新节点添加到当前社区中所产生的 fitness 值增量。
- cal_remove_fitness() :计算将当前社区中的一个节点移除所产生的 fitness 值减量。
- recalculate() :重新计算社区中每个节点的 fitness 值,并返回需要移除的节点的 ID。
其中,fitness 值是用来衡量节点在社区中的重要性的指标,alpha 是控制 fitness 值衰减函数的参数。
相关问题
以下代码主要功能:class Community(): ''' use set operation to optimize calculation ''' def init(self,G,alpha=1.0): self._G = G self._alpha = alpha self._nodes = set() self._k_in = 0 self._k_out = 0 def add_node(self,node): neighbors = set(self._G.neighbors(node)) node_k_in = len(neighbors & self._nodes) node_k_out = len(neighbors) - node_k_in self._nodes.add(node) self._k_in += 2node_k_in self._k_out = self._k_out+node_k_out-node_k_in def remove_node(self,node): neighbors = set(self._G.neighbors(node)) community_nodes = self._nodes node_k_in = len(neighbors & community_nodes) node_k_out = len(neighbors) - node_k_in self._nodes.remove(node) self._k_in -= 2node_k_in self._k_out = self._k_out - node_k_out+node_k_in
这段代码定义了一个名为Community的类,用于社区检测。该类具有以下功能:
- 初始化函数init(self,G,alpha=1.0),其中G表示待检测的图,alpha表示社区内部边的权重(默认为1.0)。
- 添加节点函数add_node(self,node),其中node表示要添加的节点。该函数会将节点添加到当前社区中,并计算该节点与社区内节点的边权重,更新社区内部边和外部边的权重。
- 移除节点函数remove_node(self,node),其中node表示要移除的节点。该函数会将节点从当前社区中移除,并更新社区内部边和外部边的权重。
这段代码利用集合操作来优化计算,其中self._nodes表示当前社区内的节点集合,neighbors表示当前节点的邻居节点集合,node_k_in表示当前节点与社区内节点的边权重,node_k_out表示当前节点与社区外节点的边权重,self._k_in表示社区内部边的权重,self._k_out表示社区外部边的权重。
Focal 损失函数代码如下:def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLoss(nn.Module): def init(self, weight=None, gamma=0.): super(FocalLoss, self).init() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) LDAM损失函数代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) Large Margin aware Focal (LMF) 损失函数是 Focal 损失函数和 LDAM损失函数加权的线性组合,帮我用pytorch代码实现LMF损失函数并在模型中使用
LMF损失函数的代码如下:
```
class LMF_Loss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, gamma=2.0, alpha=0.25):
super(LMF_Loss, self).__init__()
self.focal_loss = FocalLoss(weight=weight, gamma=gamma)
self.ldam_loss = LDAMLoss(cls_num_list=cls_num_list, max_m=max_m, weight=weight, s=s)
self.alpha = alpha
def forward(self, x, target):
focal_loss = self.focal_loss(x, target)
ldam_loss = self.ldam_loss(x, target)
output = self.alpha * ldam_loss + (1 - self.alpha) * focal_loss
return output
```
在模型中使用时,可以将LMF_Loss作为损失函数进行指定。
例如,如果你的模型是一个分类模型,可以这样定义:
```
model = MyModel()
criterion = LMF_Loss(cls_num_list=[class0_num, class1_num, class2_num], max_m=0.5, weight=class_weights, s=30, gamma=2.0, alpha=0.25)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(num_epochs):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
其中,`cls_num_list`是一个列表,包含每个类别的样本数量,`max_m`是LDAM损失函数中的超参数,`weight`是样本权重,`s`是LDAM损失函数中的超参数,`gamma`是Focal损失函数中的超参数,`alpha`是LMF损失函数中的超参数,控制两个损失函数的加权。
阅读全文