SELECT TIME_TO_SEC(TIMEDIFF(TIMEDIFF(NEW.recycle_time, NEW.get_time))) FROM em_salary;
时间: 2023-09-20 09:04:08 浏览: 75
这是一个 MySQL 查询语句,它计算了 em_salary 表中的每一行的 recycle_time 和 get_time 两列之间的时间差,并将结果转换为秒数。
具体来说,TIMEDIFF(NEW.recycle_time, NEW.get_time) 返回一个时间间隔,表示 recycle_time 减去 get_time 的结果。然后 TIMEDIFF() 函数再次被调用,计算这个时间间隔与 0:00:00 之间的时间差,也就是转换为秒数。
请注意,这是一个触发器语句,它会在插入或更新 em_salary 表中的每一行时自动执行。
相关问题
> 1582 - Incorrect parameter count in the call to native function 'TIMEDIFF' > 时间: 0.036s
这个错误提示意味着在调用 `TIMEDIFF` 函数时传入了错误的参数数量。`TIMEDIFF` 函数需要两个时间参数作为输入,以计算它们之间的时间差。请检查你的代码,确认你是否正确地传递了两个时间参数给 `TIMEDIFF` 函数。如果你仍然无法解决问题,可以提供更多的上下文信息,例如你的代码片段或更详细的错误信息,以便我能够更好地帮助你。
function sol_kf(filename)%pos文件 global glc; %read solution file solution=readGINavsol(filename); n=size(solution,1); %initialize 初始化 x = zeros(6,1);%state vector xP = zeros(6,6);%covariance of x协方差阵 sqrt_accPSD_hor=15;%m/s^2/sqrt(Hz) sqrt_accPSD_up=0.1;%m/s^2/sqrt(Hz) %三个方向 accPSD_enu =zeros(3,3); accPSD_enu(1,1)=(sqrt_accPSD_hor)^2; accPSD_enu(2,2)=(sqrt_accPSD_hor)^2; accPSD_enu(3,3)=sqrt_accPSD_up^2; bInitialized=0; time_x = solution(1).time; %all epochs for m=1:n %load data of new epoch sol = solution(m); Cne=xyz2enu(sol.pos);%转换到地球坐标系 accPSD=Cne'*accPSD_enu*Cne; vel=sol.vel'; pos=sol.pos'; posP=[sol.posP(1) sol.posP(4) sol.posP(6); sol.posP(4) sol.posP(2) sol.posP(5); sol.posP(6) sol.posP(5) sol.posP(3)]; velP=[sol.velP(1) sol.velP(4) sol.velP(6); sol.velP(4) sol.velP(2) sol.velP(5); sol.velP(6) sol.velP(5) sol.velP(3)]; dt = timediff(sol.time,time_x); if dt>15 bInitialized=0; end %initialize if ~bInitialized x = [pos; vel]; xP=zeros(6,6); xP(1:3,1:3)= eye(3)*1e16; xP(4:6,4:6)= eye(3)*100; if sol.posP(1)>0 xP(1:3,1:3)= posP; end if sol.velP(1)>0 xP(4:6,4:6)= velP; end time_x = sol.time; bInitialized=1; continue; end %%%%%%%%%%%%%%%to do%%%%%%%%%%%%%%%%%%%%%%%%% %step 1: prediction %Q计算系统噪声协方差阵 %step 2: update %R 观测噪声协方差阵 这是使用MATLAB实现卡尔曼滤波的代码,请帮我完成它
好的,我会帮您完成这段代码。
首先,我们需要计算系统噪声协方差阵 Q,可以使用以下代码:
```
dt = timediff(sol.time,time_x);
Q = zeros(6,6);
Q(1:3,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^3/3;
Q(1:3,4:6) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,4:6) = eye(3)*sqrt_accPSD_hor^2*dt + eye(3)*sqrt_accPSD_up^2*dt^3/3;
```
然后,我们可以进行卡尔曼滤波的预测步骤,使用以下代码:
```
A = eye(6);
A(1:3,4:6) = eye(3)*dt;
x = A*x;
xP = A*xP*A' + Q;
```
最后,我们还需要进行卡尔曼滤波的更新步骤。R 观测噪声协方差阵需要根据具体情况进行设置,这里我们假设观测噪声协方差阵为 1 米。
```
H = eye(6);
R = eye(6)*1;
K = xP*H'/(H*xP*H' + R);
x = x + K*(pos' - H*x);
xP = (eye(6) - K*H)*xP;
```
最终,完整的代码如下:
```
function sol_kf(filename)
%pos文件
global glc;
%read solution file
solution=readGINavsol(filename);
n=size(solution,1);
%initialize 初始化
x = zeros(6,1);%state vector
xP = zeros(6,6);%covariance of x协方差阵
sqrt_accPSD_hor=15;%m/s^2/sqrt(Hz)
sqrt_accPSD_up=0.1;%m/s^2/sqrt(Hz)
%三个方向
accPSD_enu =zeros(3,3);
accPSD_enu(1,1)=(sqrt_accPSD_hor)^2;
accPSD_enu(2,2)=(sqrt_accPSD_hor)^2;
accPSD_enu(3,3)=sqrt_accPSD_up^2;
bInitialized=0;
time_x = solution(1).time;
% Kalman filter loop
for m=1:n
%load data of new epoch
sol = solution(m);
Cne=xyz2enu(sol.pos);%转换到地球坐标系
accPSD=Cne'*accPSD_enu*Cne;
vel=sol.vel';
pos=sol.pos';
posP=[sol.posP(1) sol.posP(4) sol.posP(6);
sol.posP(4) sol.posP(2) sol.posP(5);
sol.posP(6) sol.posP(5) sol.posP(3)];
velP=[sol.velP(1) sol.velP(4) sol.velP(6);
sol.velP(4) sol.velP(2) sol.velP(5);
sol.velP(6) sol.velP(5) sol.velP(3)];
dt = timediff(sol.time,time_x);
if dt>15
bInitialized=0;
end
%initialize
if ~bInitialized
x = [pos; vel];
xP=zeros(6,6);
xP(1:3,1:3)= eye(3)*1e16;
xP(4:6,4:6)= eye(3)*100;
if sol.posP(1)>0
xP(1:3,1:3)= posP;
end
if sol.velP(1)>0
xP(4:6,4:6)= velP;
end
time_x = sol.time;
bInitialized=1;
continue;
end
%step 1: prediction
%Q计算系统噪声协方差阵
Q = zeros(6,6);
Q(1:3,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^3/3;
Q(1:3,4:6) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,1:3) = eye(3)*sqrt_accPSD_hor^2*dt^2/2;
Q(4:6,4:6) = eye(3)*sqrt_accPSD_hor^2*dt + eye(3)*sqrt_accPSD_up^2*dt^3/3;
A = eye(6);
A(1:3,4:6) = eye(3)*dt;
x = A*x;
xP = A*xP*A' + Q;
%step 2: update
%R 观测噪声协方差阵
H = eye(6);
R = eye(6)*1;
K = xP*H'/(H*xP*H' + R);
x = x + K*(pos' - H*x);
xP = (eye(6) - K*H)*xP;
end
```
希望这个代码可以帮到您!
阅读全文