plt.axvspan(xmin=kaishi_date1,xmax=jieshu_date1,alpha=0.3,color='r') plt.axvspan(xmin=kaishi_date2,xmax=jieshu_date2,alpha=0.3,color='r') plt.axvspan(xmin=kaishi_date3,xmax=jieshu_date3,alpha=0.3,color='r')能否在一张图表中显示多个
时间: 2024-02-25 08:52:53 浏览: 152
是的,可以在同一张图表中显示多个axvspan。您只需要将第一个axvspan之后的两行代码复制并粘贴,更改变量名称以及希望显示的时间段即可。例如:
```
plt.axvspan(xmin=kaishi_date1,xmax=jieshu_date1,alpha=0.3,color='r')
plt.axvspan(xmin=kaishi_date2,xmax=jieshu_date2,alpha=0.3,color='b')
plt.axvspan(xmin=kaishi_date3,xmax=jieshu_date3,alpha=0.3,color='g')
```
这将在同一张图表中显示三个不同的axvspan,每个都有不同的颜色和时间段。
相关问题
data = pd.read_excel('RESSET_DRESSTK2.xlsx') data.columns = ['code','date', 'r'] r = data.loc[:, ['r']].values plt.plot(r) plt.show() r_df = pd.DataFrame({'r': r.flatten()}) num_trading_days = len(r_df) mean = r_df.mean() std = r_df.std() skewness = r_df.skew() kurtosis = r_df.kurtosis() max_value = r_df.max() min_value = r_df.min() autocorr = r_df.autocorr()修改一下这个程序
您可以根据您的需求对程序进行修改,下面是一些可能有用的修改建议:
1. 检查数据是否成功读取:可以在读取数据后添加一行代码,如`print(data.head())`,以便检查数据是否成功读取。
2. 指定日期列的格式:如果日期列的格式不是标准的日期格式,可能需要使用`pd.to_datetime`函数将其转换为日期类型。例如:`data['date'] = pd.to_datetime(data['date'], format='%Y-%m-%d')`。
3. 绘制更加详细的图表:如果需要绘制更加详细的图表,可以添加一些参数,例如:`plt.plot(data['date'], r)`。这样可以将时间序列数据的横坐标设置为日期。
4. 提取更多的统计量:除了原始数据的平均值、标准差、偏度、峰度、最大值、最小值和自相关系数之外,还可以提取其他的统计量。例如:中位数、四分位数、方差、协方差等等。
5. 使用更加规范的变量名:为了使代码更加易于阅读和理解,可以使用更加规范的变量名,例如:`returns_df`代替`r_df`,`num_returns`代替`num_trading_days`,`autocorrelation`代替`autocorr`等等。
下面是一个修改后的程序,供您参考:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据并指定列名
data = pd.read_excel('RESSET_DRESSTK2.xlsx', header=None)
data.columns = ['code', 'date', 'return']
# 将日期列转换为日期类型
data['date'] = pd.to_datetime(data['date'], format='%Y-%m-%d')
# 绘制时间序列图
plt.plot(data['date'], data['return'])
plt.title('Stock Returns')
plt.xlabel('Date')
plt.ylabel('Returns')
plt.show()
# 计算统计量
returns_df = pd.DataFrame({'return': data['return'].values})
num_returns = len(returns_df)
mean_return = returns_df.mean().values[0]
std_return = returns_df.std().values[0]
skewness = returns_df.skew().values[0]
kurtosis = returns_df.kurtosis().values[0]
max_return = returns_df.max().values[0]
min_return = returns_df.min().values[0]
autocorrelation = returns_df['return'].autocorr()
# 打印统计量
print(f'Number of trading days: {num_returns}')
print(f'Mean return: {mean_return:.4f}')
print(f'Standard deviation of return: {std_return:.4f}')
print(f'Skewness: {skewness:.4f}')
print(f'Kurtosis: {kurtosis:.4f}')
print(f'Maximum return: {max_return:.4f}')
print(f'Minimum return: {min_return:.4f}')
print(f'Autocorrelation: {autocorrelation:.4f}')
```
plt.plot(test_data.index, test_data.values, label='Actual') plt.plot(test_data.index, forecast_mean, label='Forecast') forecast_upper = forecast_upper.to_numpy().ravel() forecast_lower = forecast_lower.to_numpy().ravel() plt.fill_between(test_data.index, forecast_upper, forecast_lower, color='gray', alpha=0.2) plt.legend() plt.show() # 数据检验 resid = arima_model.resid / garch_model.conditional_volatility lb_test = sm.stats.acorr_ljungbox(resid, lags=[10]) print(lb_test)
这段代码是用来展示时间序列预测结果并进行数据检验的。首先,使用 `plt.plot()` 函数绘制了实际数据和预测数据的曲线,并使用 `plt.fill_between()` 函数填充了预测数据的置信区间。然后,使用 `sm.stats.acorr_ljungbox()` 函数对模型的残差进行 Ljung-Box 检验,以评估模型的拟合效果。其中,`resid` 是 ARIMA-GARCH 模型的残差序列,`lb_test` 返回了经过 Ljung-Box 检验后的统计量和 p 值。
阅读全文