def gram_matrix(x): x = tf.transpose(x, (2,0,1)) features = tf.reshape(x, (tf.shape(x)[0], -1)) gram = tf.matmul(features, tf.transpose(features)) return gram def style_loss(style_img, combination_img): S = gram_matrix(style_img) C = gram_matrix(combination_img) channels = 3 size = img_heigth * img_width return tf.reduce_sum(tf.square(S - C) / (4.0 * (channels ** 2) * (size ** 2)))

时间: 2024-04-18 19:27:51 浏览: 13
这段代码定义了一个计算风格损失的函数。在该函数中,首先通过调用`gram_matrix`函数分别计算风格图像和合成图像的Gram矩阵。然后,计算通道数和图像尺寸的变量。最后,通过计算两个Gram矩阵之间的平方差,并将其除以一个常数,得到风格损失。 风格损失是通过比较风格图像和合成图像在特征表示层面的差异来衡量的。Gram矩阵可以捕捉到特征之间的相关性,因此使用Gram矩阵来计算风格损失可以更好地反映出两幅图像之间的风格差异。
相关问题

Write a Style transfer program based on convolution neural network with python, and save the training weight in a file separately.

As an AI language model, I am not able to write and save code files. However, I can explain the general steps and process of creating a style transfer program based on convolution neural network with Python. Style transfer is a technique that enables the transfer of style and texture of one image to another image, while preserving the content of the original image. This technique is based on convolution neural network models. The general steps to create a style transfer program are as follows: 1. Load and preprocess the content and style images. 2. Define the convolution neural network model architecture for the style transfer. 3. Define the loss functions to optimize the style transfer. 4. Train the model using the defined loss functions and optimizer. 5. Save the trained model weights in a separate file for future use. Here is a sample code for creating a style transfer program based on convolution neural network with Python: ``` # Import necessary libraries import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Load and preprocess the content and style images content_image = preprocess_image(content_path) style_image = preprocess_image(style_path) # Define the convolution neural network model architecture for the style transfer def style_transfer_model(content_image, style_image): # Define the input layers for content and style images content_input = tf.keras.layers.Input(shape=content_image.shape, name='content_image') style_input = tf.keras.layers.Input(shape=style_image.shape, name='style_image') # Build the convolution neural network model architecture # Add convolutional and pooling layers to extract features from content and style images # Add upsampling and convolutional layers to apply the learned style to the content image # Define the output layer as the stylized image output_image = ... # Define the model object model = tf.keras.models.Model(inputs=[content_input, style_input], outputs=output_image) return model # Define the loss functions to optimize the style transfer # Use mean squared error for content loss and Gram matrix for style loss def content_loss(content_features, generated_features): mse_loss = tf.reduce_mean(tf.square(content_features - generated_features)) return mse_loss def gram_matrix(input_tensor): channels = int(input_tensor.shape[-1]) a = tf.reshape(input_tensor, [-1, channels]) n = tf.shape(a)[0] gram = tf.matmul(a, a, transpose_a=True) return gram / tf.cast(n, tf.float32) def style_loss(style_features, generated_features): style_gram = gram_matrix(style_features) generated_gram = gram_matrix(generated_features) mse_loss = tf.reduce_mean(tf.square(style_gram - generated_gram)) return mse_loss # Train the model using the defined loss functions and optimizer model = style_transfer_model(content_image, style_image) content_features = ... style_features = ... generated_features = model([content_image, style_image]) content_loss_val = content_loss(content_features, generated_features) style_loss_val = style_loss(style_features, generated_features) total_loss = content_loss_val + style_loss_val optimizer = tf.keras.optimizers.Adam(learning_rate=0.001) model.compile(optimizer, loss=total_loss) model.fit(x=[content_image, style_image], y=target_image, epochs=10) # Save the trained model weights in a separate file for future use model.save_weights('style_transfer_weights.h5') ``` In this code, we first load and preprocess the content and style images. We then define the convolution neural network model architecture for style transfer and the loss functions for optimizing the style transfer. We train the model using the defined loss functions and optimizer, and finally save the trained model weights in a separate file for future use.

搜索出一个完整的人脸神经风格迁移python算法

以下是一个完整的人脸神经风格迁移python算法: ```python import tensorflow as tf import numpy as np import PIL.Image import time import functools import cv2 # 定义VGG19网络,用于提取风格和内容特征 def vgg_layers(layer_names): vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet') vgg.trainable = False outputs = [vgg.get_layer(name).output for name in layer_names] model = tf.keras.Model([vgg.input], outputs) return model # 定义图像预处理函数 def load_and_process_img(img_path): img = tf.keras.preprocessing.image.load_img(img_path) img = tf.keras.preprocessing.image.img_to_array(img) img = tf.image.resize(img, [512, 512]) img = tf.keras.applications.vgg19.preprocess_input(img) return img # 定义图像后处理函数 def deprocess_img(processed_img): x = processed_img.copy() if len(x.shape) == 4: x = np.squeeze(x, 0) assert len(x.shape) == 3, ("Input to deprocess image must be an image of " "dimension [1, height, width, channel] or [height, width, channel]") if len(x.shape) != 3: raise ValueError("Invalid input to deprocessing image") # perform the inverse of the preprocessing step x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # 定义内容损失函数 def content_loss(base_content, target): return tf.reduce_mean(tf.square(base_content - target)) # 定义风格损失函数 def gram_matrix(input_tensor): channels = int(input_tensor.shape[-1]) a = tf.reshape(input_tensor, [-1, channels]) n = tf.shape(a)[0] gram = tf.matmul(a, a, transpose_a=True) return gram / tf.cast(n, tf.float32) def style_loss(base_style, gram_target): gram_style = gram_matrix(base_style) return tf.reduce_mean(tf.square(gram_style - gram_target)) # 定义总变差损失函数 def total_variation_loss(image): x_deltas, y_deltas = tf.image.image_gradients(image) return tf.reduce_mean(tf.abs(x_deltas)) + tf.reduce_mean(tf.abs(y_deltas)) # 定义训练函数 def compute_loss(model, loss_weights, init_image, gram_style_features, content_features): style_weight, content_weight, tv_weight = loss_weights model_outputs = model(init_image) content_output = model_outputs['block5_conv2'] tv_loss = total_variation_loss(init_image) content_loss_val = content_loss(content_features['block5_conv2'], content_output) style_loss_val = 0 for name in gram_style_features.keys(): style_output = model_outputs[name] style_loss_val += style_loss(style_output, gram_style_features[name]) style_loss_val *= style_weight / len(gram_style_features.keys()) content_loss_val *= content_weight / len(content_features.keys()) tv_loss *= tv_weight total_loss = style_loss_val + content_loss_val + tv_loss return total_loss, style_loss_val, content_loss_val, tv_loss @tf.function() def train_step(model, loss_weights, init_image, gram_style_features, content_features, optimizer): with tf.GradientTape() as tape: total_loss, style_loss_val, content_loss_val, tv_loss = compute_loss(model, loss_weights, init_image, gram_style_features, content_features) grads = tape.gradient(total_loss, init_image) optimizer.apply_gradients([(grads, init_image)]) init_image.assign(tf.clip_by_value(init_image, clip_value_min=0.0, clip_value_max=255.0)) # 定义主函数 def style_transfer(content_path, style_path, num_iterations=1000, content_weight=1e3, style_weight=1e-2, tv_weight=30): # 加载图像 content_image = load_and_process_img(content_path) style_image = load_and_process_img(style_path) # 提取内容特征和风格特征 content_features = vgg_layers(['block5_conv2'])(content_image) style_features = vgg_layers(['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'])(style_image) gram_style_features = {name: gram_matrix(style_features[name]) for name in style_features.keys()} # 初始化目标图像 init_image = tf.Variable(content_image, dtype=tf.float32) # 定义优化器 optimizer = tf.optimizers.Adam(learning_rate=5, beta_1=0.99, epsilon=1e-1) # 定义损失权重 loss_weights = (style_weight, content_weight, tv_weight) # 训练 best_loss, best_img = float('inf'), None for i in range(num_iterations): train_step(vgg_layers(['block5_conv2']), loss_weights, init_image, gram_style_features, content_features, optimizer) loss, style_loss_val, content_loss_val, tv_loss = compute_loss(vgg_layers(['block5_conv2']), loss_weights, init_image, gram_style_features, content_features) if loss < best_loss: best_loss = loss best_img = deprocess_img(init_image.numpy()) if i % 100 == 0: print("Iteration: {}".format(i)) print("Total loss: {:.4e}, " "style loss: {:.4e}, " "content loss: {:.4e}, " "tv loss: {:.4e}".format(loss, style_loss_val, content_loss_val, tv_loss)) return best_img # 测试 content_path = 'content.jpg' style_path = 'style.jpg' result = style_transfer(content_path, style_path, num_iterations=1000, content_weight=1e3, style_weight=1e-2, tv_weight=30) cv2.imshow("result", result) cv2.waitKey(0) ```

相关推荐

最新推荐

recommend-type

网络安全network-security-mind-map.zip

【资源简介】 第一章 网络安全概述 第二章 扫描与防御技术 第三章 网络监听及防御技术 第四章 口令破解与防御技术 第五章 欺骗攻击及防御技术 第六章 拒绝服务攻击与防御技术 第七章 缓冲区溢出攻击及防御技术 第八章 Web攻击及防御技术 第九章 木马攻击与防御技术 第十章 计算机病毒 第十一章 网络安全发展及未来
recommend-type

分布式锁与信号量.md

附件是分布式锁与信号量介绍和对比,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

asp.net+sql2008在线论坛系统【ASP】.zip

asp.net+sql2008在线论坛系统【ASP】
recommend-type

h5py-2.7.0-cp35-cp35m-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

cryptography-35.0.0-pp37-pypy37_pp73-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性

![MATLAB结构体与对象编程:构建面向对象的应用程序,提升代码可维护性和可扩展性](https://picx.zhimg.com/80/v2-8132d9acfebe1c248865e24dc5445720_1440w.webp?source=1def8aca) # 1. MATLAB结构体基础** MATLAB结构体是一种数据结构,用于存储和组织相关数据。它由一系列域组成,每个域都有一个名称和一个值。结构体提供了对数据的灵活访问和管理,使其成为组织和处理复杂数据集的理想选择。 MATLAB中创建结构体非常简单,使用struct函数即可。例如: ```matlab myStruct
recommend-type

详细描述一下STM32F103C8T6怎么与DHT11连接

STM32F103C8T6可以通过单总线协议与DHT11连接。连接步骤如下: 1. 将DHT11的VCC引脚连接到STM32F103C8T6的5V电源引脚; 2. 将DHT11的GND引脚连接到STM32F103C8T6的GND引脚; 3. 将DHT11的DATA引脚连接到STM32F103C8T6的GPIO引脚,可以选择任一GPIO引脚,需要在程序中配置; 4. 在程序中初始化GPIO引脚,将其设为输出模式,并输出高电平,持续至少18ms,以激活DHT11; 5. 将GPIO引脚设为输入模式,等待DHT11响应,DHT11会先输出一个80us的低电平,然后输出一个80us的高电平,
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。