python opencv opencv perspectiveTransform

时间: 2024-04-08 07:28:08 浏览: 12
以下是使用Python OpenCV中的`cv2.getPerspectiveTransform`函数进行透视变换的示例代码[^2]: ```python import cv2 import numpy as np # 定义原始图像的四个顶点坐标 pts1 = np.float32([[56, 65], [368, 52], [28, 387], [389, 390]]) # 定义目标图像的四个顶点坐标 pts2 = np.float32([[0, 0], [300, 0], [0, 300], [300, 300]]) # 读取原始图像 img = cv2.imread('input.jpg') # 进行透视变换 M = cv2.getPerspectiveTransform(pts1, pts2) dst = cv2.warpPerspective(img, M, (300, 300)) # 显示结果图像 cv2.imshow('Input', img) cv2.imshow('Output', dst) cv2.waitKey(0) cv2.destroyAllWindows() ``` 这段代码首先定义了原始图像的四个顶点坐标`pts1`和目标图像的四个顶点坐标`pts2`。然后使用`cv2.getPerspectiveTransform`函数计算透视变换矩阵`M`。最后,使用`cv2.warpPerspective`函数将原始图像进行透视变换得到目标图像`dst`。最后,通过`cv2.imshow`函数显示原始图像和目标图像。
相关问题

python opencv 图像sift配准拼接

1. 导入库 ``` import cv2 import numpy as np ``` 2. 读取图片 ``` img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') ``` 3. 提取关键点和特征向量 ``` sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) ``` 4. 匹配特征点 ``` bf = cv2.BFMatcher() matches = bf.knnMatch(des1,des2,k=2) ``` 5. 筛选匹配点 ``` good = [] for m,n in matches: if m.distance < 0.75*n.distance: good.append(m) ``` 6. 计算变换矩阵 ``` src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) ``` 7. 图像拼接 ``` h,w = img1.shape[:2] pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,M) dst = np.int32(dst) offset = np.array([w,0]) dst += offset result_img = cv2.polylines(img2,[dst],True,(255,0,0),3, cv2.LINE_AA) result_img[offset[1]:h+offset[1],:w,:] = img1 ``` 完整代码: ``` import cv2 import numpy as np img1 = cv2.imread('image1.jpg') img2 = cv2.imread('image2.jpg') sift = cv2.xfeatures2d.SIFT_create() kp1, des1 = sift.detectAndCompute(img1,None) kp2, des2 = sift.detectAndCompute(img2,None) bf = cv2.BFMatcher() matches = bf.knnMatch(des1,des2,k=2) good = [] for m,n in matches: if m.distance < 0.75*n.distance: good.append(m) src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2) dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2) M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0) h,w = img1.shape[:2] pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2) dst = cv2.perspectiveTransform(pts,M) dst = np.int32(dst) offset = np.array([w,0]) dst += offset result_img = cv2.polylines(img2,[dst],True,(255,0,0),3, cv2.LINE_AA) result_img[offset[1]:h+offset[1],:w,:] = img1 cv2.imshow("Result", result_img) cv2.waitKey(0) cv2.destroyAllWindows() ```

opencv python目标跟着

### 回答1: 我可以回答这个问题。Opencv 是一个开源计算机视觉库,它可以使用 Python 进行编程。目标跟踪是指在视频或图像中跟踪一个特定的目标,例如人或车辆。在 Opencv 中,可以使用不同的算法来实现目标跟踪,例如卡尔曼滤波器、背景减法和光流法等。 ### 回答2: OpenCV是一个用于计算机视觉任务的开源库,在Python中也有对应的接口。目标跟踪是计算机视觉的一个重要任务,它可以用于追踪视频中的特定对象。 在OpenCV中实现目标跟踪可以使用多种技术,其中一种常用的方法是基于颜色的目标跟踪。这种方法通过在图像中检测特定颜色的区域,然后跟踪这些区域来实现目标的追踪。首先,我们需要定义目标所在的颜色范围,可以通过调整颜色阈值来选择所需的目标颜色。然后,通过将图像转换为HSV色彩空间,并应用颜色阈值来创建一个二值图像。接下来,使用形态学操作,如腐蚀和膨胀来去除噪声并平滑目标区域。最后,利用轮廓检测函数来检测目标的轮廓,并进行跟踪。 除了基于颜色的目标跟踪,还有一些其他方法可以实现目标跟踪,如基于特征的目标跟踪。基于特征的目标跟踪通过提取目标的特征点,如边缘、角点或SIFT特征点,并使用这些特征点来跟踪目标。这种方法通常更加鲁棒和准确。 总之,使用OpenCV和Python可以实现目标跟踪任务。根据具体的需求和场景,可以选择合适的跟踪方法,如基于颜色的跟踪或基于特征的跟踪。这些方法可以帮助我们在图像或视频中准确地追踪目标,并应用于各种计算机视觉应用中。 ### 回答3: 目标跟随是指使用OpenCV和Python对特定目标进行实时跟踪和定位的过程。以下是一种简单的实现方法: 1. 导入必要的模块: ```python import cv2 import numpy as np ``` 2. 加载目标图像和视频流: ```python target_img = cv2.imread("target.jpg") # 目标图像 video_stream = cv2.VideoCapture(0) # 视频流,0表示默认摄像头 ``` 3. 使用图像处理算法初始化目标: ```python # 将目标图像转换为灰度图 target_gray = cv2.cvtColor(target_img, cv2.COLOR_BGR2GRAY) # 使用特征匹配算法(如ORB)检测关键点和描述符 orb = cv2.ORB_create() target_keypoints, target_descriptors = orb.detectAndCompute(target_gray, None) ``` 4. 在视频流中实时跟踪目标: ```python while True: ret, frame = video_stream.read() # 读取视频流的帧 # 将帧图像转换为灰度图 frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 使用特征匹配算法检测帧图像的关键点和描述符 frame_keypoints, frame_descriptors = orb.detectAndCompute(frame_gray, None) # 使用暴力匹配算法(如Brute-Force)找到最佳匹配 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(target_descriptors, frame_descriptors) # 根据匹配结果绘制框选目标区域 if len(matches) > 10: # 设置阈值,匹配点数超过阈值才认为目标存在 src_pts = np.float32([target_keypoints[m.queryIdx].pt for m in matches]).reshape(-1, 1, 2) dst_pts = np.float32([frame_keypoints[m.trainIdx].pt for m in matches]).reshape(-1, 1, 2) # 使用RANSAC算法估计变换矩阵 M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) # 在帧图像上绘制目标区域 h, w = target_img.shape[:2] corners = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2) dst_corners = cv2.perspectiveTransform(corners, M) frame = cv2.polylines(frame, [np.int32(dst_corners)], True, (0, 255, 0), 3) # 显示结果 cv2.imshow('Target Tracking', frame) if cv2.waitKey(1) == ord('q'): # 按下Q键退出 break # 释放资源 video_stream.release() cv2.destroyAllWindows() ``` 这是一个简单的目标跟踪示例。可以根据具体需要调整算法参数和阈值来提高目标跟踪的准确性。

相关推荐

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩