基于hog和svm的道路行人检测是什么

时间: 2023-06-12 17:07:58 浏览: 57
基于HOG(Histogram of Oriented Gradients,方向梯度直方图)和SVM(Support Vector Machine,支持向量机)的道路行人检测是一种计算机视觉技术,用于在道路场景中检测行人。它的基本原理是通过提取图像中行人的HOG特征,将其作为SVM分类器的输入,从而实现对行人的分类和检测。在这个过程中,HOG特征描述了行人在图像中的外形和纹理特征,而SVM分类器则通过学习正负样本之间的差异来判断图像中的物体是否为行人。这种方法的优点是准确率高、计算速度快,但是它也存在一些缺点,例如需要对不同尺度和角度的图像进行多次计算,容易受到光照变化和背景干扰的影响等。
相关问题

python实现基于HOG+SVM的行人检测算法

行人检测是计算机视觉中的一个重要应用,HOG+SVM是一种常用的行人检测算法。下面是基于Python实现HOG+SVM行人检测算法的步骤: 1.收集行人数据集。需要有大量的正样本和负样本数据,正样本为行人图片,负样本为非行人图片。 2.提取HOG特征。使用OpenCV中的HOGDescriptor函数,对每张图片提取HOG特征。HOG特征是一种局部特征,可以很好地描述行人的外观特征。 3.训练SVM分类器。将提取的HOG特征作为输入,将正样本标记为1,负样本标记为-1,使用SVM进行训练。可以使用sklearn库中的SVM模型进行训练。 4.行人检测。对新的图片进行行人检测,先使用滑动窗口对图片进行分块,然后对每个分块提取HOG特征,输入到已训练好的SVM模型中进行分类判断。如果分类结果为1,则表示当前分块中可能存在行人,可以将其标记出来。 以上就是基于Python实现HOG+SVM行人检测算法的主要步骤。需要注意的是,该算法的准确率与数据集的质量和数量以及参数的选择有很大关系,需要不断进行调整和优化。

python实现基于HOG+SVM的行人检测算法代码

以下是一个基于Python实现HOG+SVM行人检测算法的代码示例: ```python import cv2 import numpy as np from sklearn.svm import SVC from sklearn.model_selection import train_test_split # 收集行人数据集 pos_images = ['pos1.jpg', 'pos2.jpg', 'pos3.jpg', ...] neg_images = ['neg1.jpg', 'neg2.jpg', 'neg3.jpg', ...] # 提取HOG特征 hog = cv2.HOGDescriptor() features = [] labels = [] for image_path in pos_images: img = cv2.imread(image_path) hog_feature = hog.compute(img) features.append(hog_feature) labels.append(1) for image_path in neg_images: img = cv2.imread(image_path) hog_feature = hog.compute(img) features.append(hog_feature) labels.append(-1) features = np.array(features) labels = np.array(labels) # 训练SVM分类器 X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42) svm = SVC(kernel='linear') svm.fit(X_train, y_train) # 行人检测 img = cv2.imread('test.jpg') win_size = (64, 128) block_size = (16, 16) block_stride = (8, 8) cell_size = (8, 8) nbins = 9 for i in range(0, img.shape[0]-win_size[1], block_stride[1]): for j in range(0, img.shape[1]-win_size[0], block_stride[0]): win = img[i:i+win_size[1], j:j+win_size[0]] hog_feature = hog.compute(win, winStride=(8,8), padding=(0,0)) pred = svm.predict(hog_feature.reshape(1, -1)) if pred == 1: cv2.rectangle(img, (j, i), (j+win_size[0], i+win_size[1]), (0, 255, 0), 2) cv2.imshow('result', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 该代码中,我们首先使用OpenCV中的HOGDescriptor函数对收集到的行人数据集中的图片进行HOG特征提取,并将提取的HOG特征和对应的标签存储在features和labels数组中。然后使用sklearn库中的train_test_split函数将数据集划分为训练集和测试集,并使用SVC模型进行训练。最后使用滑动窗口对测试图片进行行人检测,并将检测到的行人框标记出来。

相关推荐

Python OpenCV HOG SVM 行人检测是使用Python编程语言和OpenCV库来实现行人检测的一种方法。该方法主要利用了HOG(Histogram of Oriented Gradients)特征和SVM(Support Vector Machine)分类器来检测行人。 以下是 Python OpenCV HOG SVM 行人检测的步骤: 1. 收集行人图像数据集并标注。 2. 提取图像中的HOG特征。 3. 利用提取的特征训练SVM分类器。 4. 在测试图像中使用训练好的SVM分类器来检测行人。 具体实现细节如下: 1. 数据集收集和标注 要进行行人检测,首先需要收集行人图像数据集并进行标注。可以使用现有的数据集,例如INRIA行人数据集,或者自己创建数据集。 对于数据集的标注,可以使用图像标注工具来手动标注,例如LabelImg或VGG Image Annotator(VIA)。对于每个行人图像,需要标注行人的位置和大小。 2. 提取HOG特征 OpenCV提供了HOGDescriptor函数来提取图像中的HOG特征。HOG特征是由图像中不同方向的梯度组成的向量,可以有效地表示图像的纹理和形状特征。 代码示例: import cv2 # 创建HOG描述符对象 hog = cv2.HOGDescriptor() # 提取HOG特征 features = hog.compute(image) 其中,image是输入图像,features是提取的HOG特征向量。 3. 训练SVM分类器 在提取HOG特征后,需要使用训练数据集来训练SVM分类器。可以使用OpenCV提供的SVM函数来实现训练。 代码示例: import cv2 # 加载训练数据集和标签 train_data = cv2.imread('train_data.png') train_labels = cv2.imread('train_labels.png') # 创建SVM分类器对象 svm = cv2.ml.SVM_create() # 设置SVM参数 svm.setType(cv2.ml.SVM_C_SVC) svm.setKernel(cv2.ml.SVM_LINEAR) svm.setTermCriteria((cv2.TERM_CRITERIA_MAX_ITER, 100, 1e-6)) # 训练SVM分类器 svm.train(train_data, cv2.ml.ROW_SAMPLE, train_labels) 其中,train_data是训练数据集,train_labels是对应的标签。SVM参数可以根据实际情况进行调整。 4. 行人检测 在训练好SVM分类器后,可以在测试图像中使用它来检测行人。可以使用OpenCV提供的detectMultiScale函数来实现检测。 代码示例: import cv2 # 加载测试图像 test_image = cv2.imread('test_image.png') # 创建HOG描述符对象 hog = cv2.HOGDescriptor() # 设置SVM分类器 hog.setSVMDetector(svm.getSupportVectors()) # 行人检测 rects, weights = hog.detectMultiScale(test_image, winStride=(8, 8)) # 绘制检测结果 for (x, y, w, h) in rects: cv2.rectangle(test_image, (x, y), (x + w, y + h), (0, 255, 0), 2) # 显示检测结果 cv2.imshow('result', test_image) cv2.waitKey(0) 其中,test_image是要检测的测试图像。通过设置SVM分类器,可以使用HOG描述符对象的detectMultiScale函数来检测行人。检测结果是一组矩形框,可以使用OpenCV提供的rectangle函数来绘制。最后使用imshow函数显示检测结果。 总结: Python OpenCV HOG SVM 行人检测是一种简单有效的行人检测方法。通过收集数据集,提取HOG特征,训练SVM分类器,可以实现高效的行人检测。可以应用于视频监控、自动驾驶等领域。
HOG+SVM是一种常用的目标检测方法,其中HOG(Histogram of Oriented Gradients)是一种特征描述子,SVM(Support Vector Machine)是一种分类器。通过使用HOG特征描述子提取图像中的行人特征,然后使用SVM分类器对提取的特征进行分类,从而实现目标行人的检测。 在使用HLS(High-Level Synthesis)实现HOG+SVM目标行人检测时,可以将HOG特征描述子和SVM分类器的算法实现采用C语言编写,并进行分析优化,以更好地利用FPGA的底层架构和资源。这个过程涉及修改directive和C代码,根据不同的需求进行优化指令的实现方式。最后,通过C和RTL联合仿真,可以输出设计并导出IP,以便在vivado的其他设计中使用。 使用HLS实现HOG+SVM目标行人检测的优势在于简化了代码编写的过程。相比于直接编写RTL代码,使用HLS可以通过一个简单的for循环调用模块A来实现对模块A的复用。在资源有限的情况下,可以进行分时复用;而在需要高吞吐量的情况下,可以进行逻辑复制。只需添加不同的directive,即可生成不同的solution,综合成不同的电路结构,非常方便和高效。\[1\]\[2\] #### 引用[.reference_title] - *1* *2* [HOG+SVM实现行人检测原理总结](https://blog.csdn.net/weixin_32954161/article/details/115905294)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

最新推荐

HOG+SVM行人检测算法

在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测。而这两位也通过大量的测试发现,HOG +SVM是速度和效果综合平衡性能较好的一种...

基于HOG特征与SVM算法的图像分类 .docx

本次实验使用的是自己提出的一个关于路面裂缝的crack数据集,为提升实验效果,先提取图像HOG特征,再利用SVM来进行分类训练,以识别图片中是否存在裂缝。本文设计了完整的HOG+SVM识别算法,使用自己提出的crack数据集...

基于HOG特征和SVM的手势识别

为克服环境带来的影响,借鉴了近年来在目标检测研究中应用较多的梯度方向直方图(HOG)技术,将其用于手势识别中。这种方法使得基于视觉的手势识别对环境不再敏感,得到了较好的识别效果。

YOLOV3训练自己的数据集(PyTorch版本).docx

YOLOV3训练自己的数据集pytorch版本训练教程

sulime-text版本4166安装包

Sublime Text是一款 轻量级 \color{red}{轻量级} 轻量级的网页编辑器,它能够透过安装外挂套件的方式,让使用者自行建立符合自身需求的程序撰写环境,也可以让使用者依据自己的偏好设定功能的快捷键与预设程序码等等,以提高使用者程序撰写的效率。

基于单片机温度控制系统设计--大学毕业论文.doc

基于单片机温度控制系统设计--大学毕业论文.doc

"REGISTOR:SSD内部非结构化数据处理平台"

REGISTOR:SSD存储裴舒怡,杨静,杨青,罗德岛大学,深圳市大普微电子有限公司。公司本文介绍了一个用于在存储器内部进行规则表达的平台REGISTOR。Registor的主要思想是在存储大型数据集的存储中加速正则表达式(regex)搜索,消除I/O瓶颈问题。在闪存SSD内部设计并增强了一个用于regex搜索的特殊硬件引擎,该引擎在从NAND闪存到主机的数据传输期间动态处理数据为了使regex搜索的速度与现代SSD的内部总线速度相匹配,在Registor硬件中设计了一种深度流水线结构,该结构由文件语义提取器、匹配候选查找器、regex匹配单元(REMU)和结果组织器组成。此外,流水线的每个阶段使得可能使用最大等位性。为了使Registor易于被高级应用程序使用,我们在Linux中开发了一组API和库,允许Registor通过有效地将单独的数据块重组为文件来处理SSD中的文件Registor的工作原

如何使用Promise.all()方法?

Promise.all()方法可以将多个Promise实例包装成一个新的Promise实例,当所有的Promise实例都成功时,返回的是一个结果数组,当其中一个Promise实例失败时,返回的是该Promise实例的错误信息。使用Promise.all()方法可以方便地处理多个异步操作的结果。 以下是使用Promise.all()方法的示例代码: ```javascript const promise1 = Promise.resolve(1); const promise2 = Promise.resolve(2); const promise3 = Promise.resolve(3)

android studio设置文档

android studio默认设置文档

海量3D模型的自适应传输

为了获得的目的图卢兹大学博士学位发布人:图卢兹国立理工学院(图卢兹INP)学科或专业:计算机与电信提交人和支持人:M. 托马斯·福吉奥尼2019年11月29日星期五标题:海量3D模型的自适应传输博士学校:图卢兹数学、计算机科学、电信(MITT)研究单位:图卢兹计算机科学研究所(IRIT)论文主任:M. 文森特·查维拉特M.阿克塞尔·卡里尔报告员:M. GWendal Simon,大西洋IMTSIDONIE CHRISTOPHE女士,国家地理研究所评审团成员:M. MAARTEN WIJNANTS,哈塞尔大学,校长M. AXEL CARLIER,图卢兹INP,成员M. GILLES GESQUIERE,里昂第二大学,成员Géraldine Morin女士,图卢兹INP,成员M. VINCENT CHARVILLAT,图卢兹INP,成员M. Wei Tsang Ooi,新加坡国立大学,研究员基于HTTP的动态自适应3D流媒体2019年11月29日星期五,图卢兹INP授予图卢兹大学博士学位,由ThomasForgione发表并答辩Gilles Gesquière�