基于hog和svm的道路行人检测是什么
时间: 2023-06-12 17:07:58 浏览: 57
基于HOG(Histogram of Oriented Gradients,方向梯度直方图)和SVM(Support Vector Machine,支持向量机)的道路行人检测是一种计算机视觉技术,用于在道路场景中检测行人。它的基本原理是通过提取图像中行人的HOG特征,将其作为SVM分类器的输入,从而实现对行人的分类和检测。在这个过程中,HOG特征描述了行人在图像中的外形和纹理特征,而SVM分类器则通过学习正负样本之间的差异来判断图像中的物体是否为行人。这种方法的优点是准确率高、计算速度快,但是它也存在一些缺点,例如需要对不同尺度和角度的图像进行多次计算,容易受到光照变化和背景干扰的影响等。
相关问题
python实现基于HOG+SVM的行人检测算法
行人检测是计算机视觉中的一个重要应用,HOG+SVM是一种常用的行人检测算法。下面是基于Python实现HOG+SVM行人检测算法的步骤:
1.收集行人数据集。需要有大量的正样本和负样本数据,正样本为行人图片,负样本为非行人图片。
2.提取HOG特征。使用OpenCV中的HOGDescriptor函数,对每张图片提取HOG特征。HOG特征是一种局部特征,可以很好地描述行人的外观特征。
3.训练SVM分类器。将提取的HOG特征作为输入,将正样本标记为1,负样本标记为-1,使用SVM进行训练。可以使用sklearn库中的SVM模型进行训练。
4.行人检测。对新的图片进行行人检测,先使用滑动窗口对图片进行分块,然后对每个分块提取HOG特征,输入到已训练好的SVM模型中进行分类判断。如果分类结果为1,则表示当前分块中可能存在行人,可以将其标记出来。
以上就是基于Python实现HOG+SVM行人检测算法的主要步骤。需要注意的是,该算法的准确率与数据集的质量和数量以及参数的选择有很大关系,需要不断进行调整和优化。
python实现基于HOG+SVM的行人检测算法代码
以下是一个基于Python实现HOG+SVM行人检测算法的代码示例:
```python
import cv2
import numpy as np
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
# 收集行人数据集
pos_images = ['pos1.jpg', 'pos2.jpg', 'pos3.jpg', ...]
neg_images = ['neg1.jpg', 'neg2.jpg', 'neg3.jpg', ...]
# 提取HOG特征
hog = cv2.HOGDescriptor()
features = []
labels = []
for image_path in pos_images:
img = cv2.imread(image_path)
hog_feature = hog.compute(img)
features.append(hog_feature)
labels.append(1)
for image_path in neg_images:
img = cv2.imread(image_path)
hog_feature = hog.compute(img)
features.append(hog_feature)
labels.append(-1)
features = np.array(features)
labels = np.array(labels)
# 训练SVM分类器
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)
svm = SVC(kernel='linear')
svm.fit(X_train, y_train)
# 行人检测
img = cv2.imread('test.jpg')
win_size = (64, 128)
block_size = (16, 16)
block_stride = (8, 8)
cell_size = (8, 8)
nbins = 9
for i in range(0, img.shape[0]-win_size[1], block_stride[1]):
for j in range(0, img.shape[1]-win_size[0], block_stride[0]):
win = img[i:i+win_size[1], j:j+win_size[0]]
hog_feature = hog.compute(win, winStride=(8,8), padding=(0,0))
pred = svm.predict(hog_feature.reshape(1, -1))
if pred == 1:
cv2.rectangle(img, (j, i), (j+win_size[0], i+win_size[1]), (0, 255, 0), 2)
cv2.imshow('result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
该代码中,我们首先使用OpenCV中的HOGDescriptor函数对收集到的行人数据集中的图片进行HOG特征提取,并将提取的HOG特征和对应的标签存储在features和labels数组中。然后使用sklearn库中的train_test_split函数将数据集划分为训练集和测试集,并使用SVC模型进行训练。最后使用滑动窗口对测试图片进行行人检测,并将检测到的行人框标记出来。
相关推荐














