iris = datasets.load_iris() X = iris.data[:, 0:2] # 我们只采用可视化的前两个特征 y = iris.target是什么意思
时间: 2024-05-31 13:11:02 浏览: 129
这段代码是用来加载鸢尾花数据集的,其中iris.data包含了四个特征的数值数据(萼片长度、萼片宽度、花瓣长度、花瓣宽度),而iris.target包含了对应的分类标签(0代表setosa,1代表versicolor,2代表virginica)。这段代码中,我们只选取了前两个特征(萼片长度、萼片宽度)进行可视化,而分类标签被赋值给了变量y。
相关问题
import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 加载 iris 数据 iris = load_iris() # 只选取两个特征和两个类别进行二分类 X = iris.data[(iris.target==0)|(iris.target==1), :2] y = iris.target[(iris.target==0)|(iris.target==1)] # 将标签转化为 0 和 1 y[y==0] = -1 # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 实现逻辑回归算法 class LogisticRegression: def __init__(self, lr=0.01, num_iter=100000, fit_intercept=True, verbose=False): self.lr = lr self.num_iter = num_iter self.fit_intercept = fit_intercept self.verbose = verbose def __add_intercept(self, X): intercept = np.ones((X.shape[0], 1)) return np.concatenate((intercept, X), axis=1) def __sigmoid(self, z): return 1 / (1 + np.exp(-z)) def __loss(self, h, y): return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean() def fit(self, X, y): if self.fit_intercept: X = self.__add_intercept(X) # 初始化参数 self.theta = np.zeros(X.shape[1]) for i in range(self.num_iter): # 计算梯度 z = np.dot(X, self.theta) h = self.__sigmoid(z) gradient = np.dot(X.T, (h - y)) / y.size # 更新参数 self.theta -= self.lr * gradient # 打印损失函数 if self.verbose and i % 10000 == 0: z = np.dot(X, self.theta) h = self.__sigmoid(z) loss = self.__loss(h, y) print(f"Loss: {loss} \t") def predict_prob(self, X): if self.fit_intercept: X = self.__add_intercept(X) return self.__sigmoid(np.dot(X, self.theta)) def predict(self, X, threshold=0.5): return self.predict_prob(X) >= threshold # 训练模型 model = LogisticRegressio
n()
model.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = model.predict(X_test)
# 计算准确率
accuracy = np.sum(y_pred == y_test) / y_test.shape[0]
print(f"Accuracy: {accuracy}")
# 可视化
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.show()
请问这段代码实现了什么功能?
from sklearn.datasets import load_digits, load_breast_cancer, load_iris, load_wine from sklearn.tree import DecisionTreeClassifier, export_graphviz import pydotplus from IPython.display import Image # 加载四个分类数据集 datasets = [load_digits(), load_breast_cancer(), load_iris(), load_wine()] # 构建for循环,训练拟合决策树模型,并用graphviz和pydotplus对每个数据集的训练结果进行可视化输出 for dataset in datasets: # 数据集划分 X = dataset.data y = dataset.target # 训练模型 clf = DecisionTreeClassifier() clf.fit(X, y) # 可视化输出 dot_data = export_graphviz(clf, out_file=None, feature_names=[str(x) for x in dataset.feature_names], class_names=[str(x) for x in dataset.target_names], filled=True, rounded=True, special_characters=True) #graph = pydotplus.graph_from_dot_data(dot_data) #img = Image(graph.create_png()) #graph.write_png("ou.png") graph = pydotplus.graph_from_dot_data(dot_data) Image(graph.create_png())这个代码运行后为什么没有图出来,改怎样修改
你需要将最后一行的 `Image(graph.create_png())` 修改为 `graph.write_png("ou.png")`,这样就可以将生成的图像保存为 PNG 格式的文件 "ou.png"。然后你可以在本地查看该文件来查看决策树的可视化结果。如果你仍然想要在 Jupyter Notebook 中显示图片,可以在 `graph.write_png("ou.png")` 之后添加一行 `Image(filename='ou.png')`。完整代码如下:
```
from sklearn.datasets import load_digits, load_breast_cancer, load_iris, load_wine
from sklearn.tree import DecisionTreeClassifier, export_graphviz
import pydotplus
from IPython.display import Image
# 加载四个分类数据集
datasets = [load_digits(), load_breast_cancer(), load_iris(), load_wine()]
# 构建for循环,训练拟合决策树模型,并用graphviz和pydotplus对每个数据集的训练结果进行可视化输出
for dataset in datasets:
# 数据集划分
X = dataset.data
y = dataset.target
# 训练模型
clf = DecisionTreeClassifier()
clf.fit(X, y)
# 可视化输出
dot_data = export_graphviz(clf, out_file=None, feature_names=[str(x) for x in dataset.feature_names],
class_names=[str(x) for x in dataset.target_names], filled=True,
rounded=True, special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_png("ou.png")
Image(filename='ou.png')
```
注意,你需要安装 `graphviz` 才能成功运行该代码。在 Windows 系统下,你还需要在环境变量中添加 Graphviz 的路径。
阅读全文