在三维空间中利用蚁群算法求解TSP模型并将最优任务序列以图像形式输出的python代码
时间: 2024-01-22 09:17:16 浏览: 78
以下是基于Python的蚁群算法求解TSP问题的代码示例:
```python
import numpy as np
import matplotlib.pyplot as plt
# TSP问题参数
n_cities = 10 # 城市数量
n_ants = 20 # 蚂蚁数量
alpha = 1 # 启发因子
beta = 5 # 期望因子
rho = 0.1 # 信息素挥发因子
Q = 100 # 信息素增强强度
iteration = 100 # 迭代次数
# 城市坐标生成
cities = np.random.rand(n_cities, 2) * 100
# 距离矩阵计算
distances = np.zeros((n_cities, n_cities))
for i in range(n_cities):
for j in range(i + 1, n_cities):
distances[i][j] = np.sqrt(np.sum((cities[i] - cities[j]) ** 2))
distances[j][i] = distances[i][j]
# 初始化信息素矩阵
pheromones = np.zeros((n_cities, n_cities))
# 蚂蚁类
class Ant:
def __init__(self):
self.path = [0]
self.visited = [False] * n_cities
self.visited[0] = True
self.distance = 0
# 转移概率计算
def calc_prob(self):
cur_city = self.path[-1]
probs = np.zeros(n_cities)
for next_city in range(n_cities):
if self.visited[next_city]:
continue
probs[next_city] = pheromones[cur_city][next_city] ** alpha * (1.0 / distances[cur_city][next_city]) ** beta
probs = probs / np.sum(probs)
return probs
# 转移
def transition(self):
probs = self.calc_prob()
next_city = np.random.choice(range(n_cities), p=probs)
self.path.append(next_city)
self.visited[next_city] = True
self.distance += distances[self.path[-2]][self.path[-1]]
# 信息素增强
def enhance_pheromones(self):
for i in range(n_cities - 1):
pheromones[self.path[i]][self.path[i + 1]] += Q / self.distance
# 重置
def reset(self):
self.path = [0]
self.visited = [False] * n_cities
self.visited[0] = True
self.distance = 0
# 迭代
best_distance = float('inf')
best_path = None
for i in range(iteration):
ants = [Ant() for _ in range(n_ants)]
for ant in ants:
for _ in range(n_cities - 1):
ant.transition()
ant.distance += distances[ant.path[-1]][ant.path[0]]
if ant.distance < best_distance:
best_distance = ant.distance
best_path = ant.path
ant.enhance_pheromones()
pheromones *= (1 - rho)
pheromones += rho * np.ones((n_cities, n_cities)) * (Q / best_distance)
# 输出最优路径图像
fig, ax = plt.subplots()
ax.scatter(cities[:, 0], cities[:, 1])
for i in range(n_cities - 1):
ax.plot([cities[best_path[i]][0], cities[best_path[i + 1]][0]], [cities[best_path[i]][1], cities[best_path[i + 1]][1]])
ax.plot([cities[best_path[-1]][0], cities[best_path[0]][0]], [cities[best_path[-1]][1], cities[best_path[0]][1]])
plt.show()
```
该代码将生成一个随机的城市坐标,利用蚁群算法求解TSP问题,并将最优路径以图像形式输出。您可以根据需要修改参数和城市坐标。
阅读全文
相关推荐
![py](https://img-home.csdnimg.cn/images/20250102104920.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![docx](https://img-home.csdnimg.cn/images/20241231044901.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)