kmeans聚类算法random_state
时间: 2023-09-08 09:16:39 浏览: 243
kmeans聚类算法中的random_state是一个用于控制随机性的参数。在KMeans算法中,质心的初始位置是随机选择的。通过设置random_state参数,可以确保每次运行算法时得到相同的结果。这在需要重现实验结果或进行结果比较时非常有用。例如,在引用中的代码中,random_state=0是用于随机初始化质心的种子值。通过保持random_state的值不变,可以确保每次运行代码时得到相同的聚类结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [Python聚类算法效果图,写代码需要注意的五个细节.docx](https://download.csdn.net/download/m0_71628805/87849590)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [一文读懂K-Means原理与Python实现](https://blog.csdn.net/qq_45590504/article/details/125287189)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文