单纯形法求解线性规划问题例题
时间: 2023-08-11 16:03:13 浏览: 165
单纯形法解线性规划问题[收集].pdf
好的,下面是一个线性规划问题的例子和单纯形法求解步骤:
假设有一个工厂需要生产两种产品A和B,每种产品需要耗费不同的资源,如下表所示:
| 产品 | 资源1 | 资源2 | 利润 |
| ---- | ---- | ---- | ---- |
| A | 2 | 1 | 10 |
| B | 1 | 3 | 20 |
该工厂有限制条件,资源1和资源2的总数不能超过给定的限制,如下表所示:
| 资源 | 限制 |
| ---- | ---- |
| 资源1 | 6 |
| 资源2 | 9 |
现在需要求解该工厂如何生产这两种产品才能获得最大利润。
单纯形法求解步骤如下:
1. 将原问题转化为标准形式:
将目标函数转化为最小化形式,加入人工变量,得到下面的标准形式:
min Z = -10x1 -20x2
s.t.
2x1 + x2 + x3 = 6
x1 + 3x2 + x4 = 9
x1, x2, x3, x4, >= 0
2. 初始化单纯形表:
| | x1 | x2 | x3 | x4 | 右端项 |
| - | - | - | - | - | ----- |
| x3 | 2 | 1 | 1 | 0 | 6 |
| x4 | 1 | 3 | 0 | 1 | 9 |
| | 10 | 20 | 0 | 0 | 0 |
3. 选择入基变量和出基变量:
首先计算每个约束条件的单位成本,即系数与松弛变量的比值,得到下面的表格:
| | x1 | x2 | x3 | x4 | 右端项 | 单位成本 |
| - | - | - | - | - | ----- | ----- |
| x3 | 2 | 1 | 1 | 0 | 6 | |
| x4 | 1 | 3 | 0 | 1 | 9 | |
| | 10 | 20 | 0 | 0 | 0 | |
选择单位成本最小的变量作为入基变量,即x2。接下来计算x2对应的约束条件中每个变量的系数与右端项的比值,得到下面的表格:
| | x1 | x2 | x3 | x4 | 右端项 | 比值 |
| - | - | - | - | - | ----- | ----- |
| x3 | 2 | 1 | 1 | 0 | 6 | 6 |
| x1 | 1/3 | 1 | 0 | 1/3 | 3 | 3 |
| | 10/3 | 0 | 0 | -20/3 | -60 | |
选择比值最小的约束条件对应的松弛变量作为出基变量,即x4。
4. 更新单纯形表:
将x4对应的约束条件转化为基变量形式,得到下面的表格:
| | x1 | x2 | x3 | x4 | 右端项 |
| - | - | - | - | - | ----- |
| x3 | 2/3 | 0 | 1 | -1/3 | 2 |
| x4 | 1/3 | 1 | 0 | 1/3 | 3 |
| | -10/3 | 0 | 0 | 20/3 | 60 |
5. 重复步骤3和4,直到无法继续优化:
继续计算每个约束条件的单位成本和比值,选择入基变量和出基变量,并更新单纯形表,得到下面的结果:
| | x1 | x2 | x3 | x4 | 右端项 |
| - | - | - | - | - | ----- |
| x1 | 1/4 | 0 | 1/4 | -1/12 | 7/2 |
| x4 | 1/4 | 1 | 0 | 1/12 | 3/2 |
| | -5/2 | 0 | 5/4 | 25/12 | 75 |
此时,所有的单位成本和比值都大于等于零,单纯形法得出的解为x1=7/2,x2=3/2,Z=65。
以上就是使用单纯形法求解线性规划问题的例子和步骤。
阅读全文