Theta* 算法python代码
时间: 2024-10-01 09:10:43 浏览: 45
python实现logistic分类算法代码
Theta*(也称为A* with relaxation)是一种改进版的A*搜索算法,它允许在估算路径成本时使用更宽松的估价函数,这在某些情况下可以加速搜索过程。以下是使用Python实现基本的A*算法的一个简单示例,Theta*通常是通过类似的方式进行扩展:
```python
import heapq
class Node:
def __init__(self, pos, g=0, h=0, f=0):
self.pos = pos
self.g = g # 实际代价
self.h = h # 估计代价
self.f = f # 总代价 f = g + h
def __lt__(self, other):
return self.f < other.f
def theta_star(start, end, heuristic, closed_set=None, relaxed_heuristic=None):
if relaxed_heuristic is None:
relaxed_heuristic = heuristic
open_set = [Node(start)]
closed_set = [] if closed_set is None else closed_set
came_from = {}
while open_set:
current = heapq.heappop(open_set)
if current.pos == end:
path = []
while current in came_from:
path.append(current)
current = came_from[current]
path.reverse()
return path
for neighbor in get_neighbors(current.pos):
tentative_g_score = current.g + distance(current.pos, neighbor)
if neighbor not in open_set or tentative_g_score < neighbor.g:
neighbor.g = tentative_g_score
neighbor.h = relaxed_heuristic(neighbor) # 使用relaxed_heuristic
neighbor.f = neighbor.g + neighbor.h
if neighbor not in open_set:
heapq.heappush(open_set, neighbor)
came_from[neighbor] = current
return None # No path found
# 假设get_neighbors()返回给定位置的所有邻居节点
# distance()计算两点之间的实际距离
```
在这个代码中,`heuristic`是你自定义的距离启发式函数,而`relaxed_heuristic`是用于优化搜索的松弛估价函数。注意实际应用中你需要根据具体需求来实现这两个函数。
阅读全文