python代码,问题代码是label = label.squeeze().cpu().detach().numpy()
时间: 2024-03-25 14:38:07 浏览: 150
根据您提供的代码,`label`的形状是(256,256,3),您可以使用`np.squeeze()`函数将其转换为(256,256),如下所示:
```
import numpy as np
import torch
# 假设label是您的标签张量
label = torch.rand(256, 256, 3)
label = label.squeeze().cpu().detach().numpy() # 将3维去掉,转换为numpy数组
label = np.squeeze(label) # 将数组的所有维度为1的轴都去掉,只留下(256,256)
print(label.shape)
```
这段代码首先将PyTorch的张量`squeeze()`成(256,256,3)的numpy数组,然后使用`numpy.squeeze()`函数去掉所有维度为1的轴,最终得到形状为(256,256)的numpy数组。
如果仍然报错,可以提供错误信息以便我们更好地了解问题。
相关问题
model = HetGraphSAGE(nfeat1=drug_feat_dim, nfeat2=protein_feat_dim, nhid=hidden_size, out_dim=drug_node, gamma=gamma) criterion = nn.MSELoss() # MSE损失函数 optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.0001) # 优化器 drug_graph = (torch.ones_like(drug_graph.to_dense())).to_sparse() data = (drug_feat.float(), protein_feat.float(), drug_graph.float(), drug_protein_graph.float()) for epoch in range(epochs): model.train() # 模型在train模式 optimizer.zero_grad() # zero_grad 清除上一次的一些梯度 output = model(data) # forward loss = criterion(output[train_mask].float(), drug_graph_label[train_mask].float()) # 只计算Train节点的损失 # 测试模型准确率 #accuracy = (torch.abs(output[test_mask].float() - drug_graph_label[test_mask].float()) < eps).sum() / (drug_graph_label[test_mask].shape[0]) #print("Epoch [{}/{}], train loss: {:.4f}, test accuracy: {:.4f}".format(epoch + 1, epochs, loss.item(), accuracy)) r2 = r2_score(drug_graph_label[test_mask].squeeze().detach().numpy(), output[test_mask].squeeze().detach().numpy()) print("Epoch [{}/{}], train loss: {:.4f}, test R2_score: {:.4f}".format( epoch + 1, epochs, loss.item(), r2)) loss.backward() optimizer.step() 怎么改成用optuna调参
可以使用 Optuna 来调参。首先,您需要确定哪些超参数需要调整,例如学习率、权重衰减、隐藏层维度等。然后,您可以使用 Optuna 创建一个函数,用于训练模型并返回验证集的 R2 得分。最后,您可以使用 Optuna 运行该函数并获得最佳超参数组合。
下面是一些示例代码:
```python
import optuna
def objective(trial):
# 定义超参数搜索范围
lr = trial.suggest_float('lr', 1e-5, 1e-2, log=True)
weight_decay = trial.suggest_float('weight_decay', 1e-6, 1e-3, log=True)
hidden_size = trial.suggest_int('hidden_size', 16, 256, log=True)
# 定义模型和优化器
model = HetGraphSAGE(nfeat1=drug_feat_dim, nfeat2=protein_feat_dim, nhid=hidden_size, out_dim=drug_node, gamma=gamma)
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
# 训练模型
for epoch in range(epochs):
model.train()
optimizer.zero_grad()
output = model(data)
loss = criterion(output[train_mask].float(), drug_graph_label[train_mask].float())
r2 = r2_score(drug_graph_label[test_mask].squeeze().detach().numpy(), output[test_mask].squeeze().detach().numpy())
loss.backward()
optimizer.step()
return r2
# 使用 Optuna 运行超参数搜索
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100)
# 打印最佳超参数组合
print('Best trial: score={}, params={}'.format(study.best_trial.value, study.best_trial.params))
```
在此示例中,我们使用 Optuna 运行了 100 次试验,并搜索了学习率、权重衰减和隐藏层维度这三个超参数。每次试验,我们都训练模型并返回验证集的 R2 得分。最后,我们打印出最佳超参数组合的得分和参数。注意,在此示例中,我们使用了默认的随机搜索算法,您也可以尝试其他的算法,例如 TPE 算法。
def handler(context, event): context.logger.info("Run yolo-v8 model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) threshold = float(data.get("threshold", 0.35)) context.user_data.model.conf = threshold image = Image.open(buf) yolo_results = context.user_data.model(image, conf=threshold)[0] labels = yolo_results.names detections = sv.Detections.from_yolov8(yolo_results) detections = detections[detections.confidence > threshold] boxes = detections.xyxy conf = detections.confidence class_ids = detections.class_id results = [] if boxes.shape[0] > 0: for label, score, box in zip(class_ids, conf, boxes): xtl = int(box[0]) ytl = int(box[1]) xbr = int(box[2]) ybr = int(box[3]) results.append({ "confidence": str(score), "label": labels.get(label, "unknown"), "points": [xtl, ytl, xbr, ybr], "type": "rectangle",}) return context.Response(body=json.dumps(results), headers={}, content_type='application/json', status_code=200)改成yolov8分割模型
以下是根据您提供的代码,修改为适应 YOLOv8 分割模型的示例代码:
```python
import io
import json
import base64
from PIL import Image
import torch
import torchvision.transforms as transforms
from torchvision import models
def handler(context, event):
context.logger.info("Run yolo-v8 segmentation model")
data = event.body
buf = io.BytesIO(base64.b64decode(data["image"]))
threshold = float(data.get("threshold", 0.35))
# 加载模型
model = models.segmentation.deeplabv3_resnet50(pretrained=True)
model.eval()
# 图像预处理
transform = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(Image.open(buf)).unsqueeze(0)
# 模型推理
with torch.no_grad():
output = model(image)['out']
output_predictions = torch.argmax(output.squeeze(), dim=0).detach().cpu().numpy()
# 处理分割结果
results = []
for class_id in range(1, output_predictions.max() + 1):
mask = (output_predictions == class_id).astype(int)
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
results.append({
"label": str(class_id),
"points": [int(x), int(y), int(x + w), int(y + h)],
"type": "rectangle"
})
return context.Response(body=json.dumps(results), headers={},
content_type='application/json', status_code=200)
```
此示例假设您正在使用 PyTorch 和 torchvision 库,并使用了预训练的 DeepLabv3_ResNet50 模型进行分割任务。代码中包括模型加载、图像预处理、模型推理和结果处理的步骤。请注意,具体的修改可能需要根据您使用的模型和环境进行调整。
阅读全文