ValueError Traceback (most recent call last) Cell In[20], line 1 ----> 1 fpr, tpr, _ = metrics.roc_curve(test_y, y_pre) 2 plt.plot(fpr, tpr) File D:\anaconda\envs\zuoye\lib\site-packages\sklearn\metrics\_ranking.py:992, in roc_curve(y_true, y_score, pos_label, sample_weight, drop_intermediate) 904 def roc_curve( 905 y_true, y_score, *, pos_label=None, sample_weight=None, drop_intermediate=True 906 ): 907 """Compute Receiver operating characteristic (ROC). 908 909 Note: this implementation is restricted to the binary classification task. (...) 990 array([1.8 , 0.8 , 0.4 , 0.35, 0.1 ]) 991 """ --> 992 fps, tps, thresholds = _binary_clf_curve( 993 y_true, y_score, pos_label=pos_label, sample_weight=sample_weight 994 ) 996 # Attempt to drop thresholds corresponding to points in between and 997 # collinear with other points. These are always suboptimal and do not 998 # appear on a plotted ROC curve (and thus do not affect the AUC). (...) 1003 # but does not drop more complicated cases like fps = [1, 3, 7], 1004 # tps = [1, 2, 4]; there is no harm in keeping too many thresholds. 1005 if drop_intermediate and len(fps) > 2: File D:\anaconda\envs\zuoye\lib\site-packages\sklearn\metrics\_ranking.py:749, in _binary_clf_curve(y_true, y_score, pos_label, sample_weight) 747 y_type = type_of_target(y_true, input_name="y_true") 748 if not (y_type == "binary" or (y_type == "multiclass" and pos_label is not None)): --> 749 raise ValueError("{0} format is not supported".format(y_type)) 751 check_consistent_length(y_true, y_score, sample_weight) 752 y_true = column_or_1d(y_true) ValueError: multiclass format is not supported
时间: 2024-04-27 09:23:25 浏览: 137
这是一个错误提示,看起来是在使用 sklearn.metrics 中的 roc_curve 函数时出现了问题。错误提示中说到了 ValueError: multiclass format is not supported,也就是说该函数不支持多类别数据。你需要检查你的数据,如果是多类别数据的话,可以尝试使用其他的函数或方法进行处理。
相关问题
Traceback (most recent call last): File "D:\pythonProject1\main.py", line 282, in <module> fpr, tpr, _ = roc_curve(y_test.ravel(), y_prob.ravel()) File "D:\Users\lenovo\anaconda3\lib\site-packages\sklearn\metrics\_ranking.py", line 992, in roc_curve fps, tps, thresholds = _binary_clf_curve( File "D:\Users\lenovo\anaconda3\lib\site-packages\sklearn\metrics\_ranking.py", line 749, in _binary_clf_curve raise ValueError("{0} format is not supported".format(y_type)) ValueError: multiclass format is not supported 进程已结束,退出代码1
这个错误是因为在计算 ROC 曲线时,模型输出的标签格式是多分类的,而 sklearn 中的 roc_curve 函数只支持二分类的标签格式。解决这个问题的方法是将模型输出的多分类标签转换为二分类标签,可以使用 one-vs-all 或 one-vs-one 策略来实现。另外,还可以使用 sklearn 中的 multiclass_roc_auc_score 函数来计算多分类的 ROC AUC 值。
Traceback (most recent call last): File "D:\moudle\main.py", line 211, in <module> fpr, tpr, _ = roc_curve(y_true_binarized, y_score) File "D:\2023.5.21\lib\site-packages\sklearn\metrics\_ranking.py", line 992, in roc_curve fps, tps, thresholds = _binary_clf_curve( File "D:\2023.5.21\lib\site-packages\sklearn\metrics\_ranking.py", line 749, in _binary_clf_curve raise ValueError("{0} format is not supported".format(y_type)) ValueError: multilabel-indicator format is not supported是什么意思,该如何修改
这个错误的意思是你传入了一个多标签指示器格式的数据,但是roc_curve函数只支持二分类问题,不支持多标签问题。因此,你需要将多标签指示器格式的数据转换为二分类格式的数据,比如标签编码(LabelEncoder)或独热编码(OneHotEncoder),然后再调用roc_curve函数计算ROC曲线。你可以使用sklearn.preprocessing中的LabelEncoder或OneHotEncoder进行转换。具体来说,你可以在代码中加入以下代码:
```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
y_true_binarized = encoder.fit_transform(y_true)
```
或者:
```
from sklearn.preprocessing import OneHotEncoder
encoder = OneHotEncoder()
y_true_binarized = encoder.fit_transform(y_true)
```
其中y_true表示多标签指示器格式的标签数据。这样,你就可以将多标签指示器格式的数据转换为二分类格式的数据,并且可以成功调用roc_curve函数计算ROC曲线了。
阅读全文