date_history = pd.DataFrame(data_integrity.iloc[:, 0]) dataset_history = pd.DataFrame(data_integrity.iloc[:, 1]) # 数据划分完,数据格式转换 dataset_history = [each[0] for each in np.array(dataset_history.iloc[:, [0]]).tolist()] # 历史数据 data_history_conversion = [{i: dataset_history[i * 96:96 * (i + 1)]} for i in range(int(len(dataset_history) / 96))] # 历史数据转化 data_pre = [each for each in np.array(dataset_pre).tolist()] # 预测所需要的今日数据 data_pre_conversion = np.array([float(item) for item in data_pre[0:96]]) # 预测所需要的今日数据的格式转化 代码优化

时间: 2024-01-14 09:04:51 浏览: 27
以下是对代码的优化: ```python date_history = pd.DataFrame(data_integrity.iloc[:, 0]) dataset_history = pd.DataFrame(data_integrity.iloc[:, 1]) # 数据划分完,数据格式转换 dataset_history = dataset_history.iloc[:, 0].tolist() # 历史数据 data_history_conversion = [dict(enumerate(dataset_history[i * 96:96 * (i + 1)])) for i in range(len(dataset_history) // 96)] # 历史数据转化 data_pre = np.array(dataset_pre).flatten().astype(float) # 预测所需要的今日数据 ``` 主要优化点有: 1. `dataset_history` 可以直接使用 `tolist()` 方法转换为列表,不需要使用 `np.array` 和 `iloc` 索引。 2. `data_history_conversion` 可以使用 `enumerate` 函数代替手动计算索引,可以使代码更加简洁。 3. `data_pre` 可以使用 `flatten()` 方法将多维数组转换为一维数组,并使用 `astype(float)` 方法将字符串转换为浮点数。
相关问题

time_new_list= data_integrity.iloc[-1, 0] minutes = int(time_new_list.minute) + int(time_new_list.hour) * 60 interval_length = ((minutes / 15) + 1) if interval_length == 96: dataset_pre = data_integrity.load.tail(int(interval_length)) else: dataset_pre = (data_integrity.load[:-int(interval_length)]).tail(96) date_history = pd.DataFrame(data_integrity.iloc[:, 0]) dataset_history = pd.DataFrame(data_integrity.iloc[:, 1]) # 数据划分完,数据格式转换 dataset_history = [each[0] for each in np.array(dataset_history.iloc[:, [0]]).tolist()] # 历史数据 data_history_conversion = [{i: dataset_history[i * 96:96 * (i + 1)]} for i in range(int(len(dataset_history) / 96))] # 历史数据转化 data_pre = [each for each in np.array(dataset_pre).tolist()] # 预测所需要的今日数据 data_pre_conversion = np.array([float(item) for item in data_pre[0:96]]) # 预测所需要的今日数据的格式转化 代码优化

以下是代码优化后的版本: ``` # 计算时间间隔 time_new_list = data_integrity.iloc[-1, 0] minutes = time_new_list.minute + time_new_list.hour * 60 interval_length = (minutes // 15) + 1 # 获取预测数据集 if interval_length == 96: dataset_pre = data_integrity.load.tail(interval_length) else: dataset_pre = data_integrity.load[:-interval_length].tail(96) # 获取历史数据集 date_history = data_integrity.iloc[:, 0] dataset_history = data_integrity.iloc[:, 1].iloc[:, 0].tolist() # 将历史数据转换为字典格式 data_history_conversion = [ {i: dataset_history[i * 96 : 96 * (i + 1)]} for i in range(len(dataset_history) // 96) ] # 获取预测所需要的今日数据 data_pre = dataset_pre.values.tolist() data_pre_conversion = np.array(data_pre[0:96], dtype=float) ``` 优化后的代码主要做了以下几个方面的改进: 1. 使用了整除符号 "//" 来计算时间间隔,避免了使用 int() 函数进行类型转换。 2. 使用了 pandas 库的 tail() 函数来获取最后几行数据,使代码更加简洁。 3. 将历史数据集的转换方式改为了使用列表推导式,避免了使用 for 循环。 4. 使用了 numpy 库的 array 函数来将预测数据转换为数组格式,避免了使用列表推导式和 for 循环。同时,指定了数组的数据类型为 float,避免了使用 float() 函数进行类型转换。

feature_importances_df = pd.DataFrame({'Feature': selected_features, 'Importance': feature_importances}) in _extract_index raise ValueError("All arrays must be of the same length")

这个错误通常是由于选中的特征名称和特征重要性的数量不致所引起的。请确保创建 `feature_importances_df` 数据帧时,选中的特征名称和特征重要性具有相同的长度。 以下是一个修正后的示例代码: ```python import pandas as pd import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import SelectFromModel import matplotlib.pyplot as plt # 1. 加载数据集 data = pd.read_csv('genotype_dataset.csv') X = data.iloc[:, 1:] # 特征 y = data.iloc[:, 0] # 标签 # 2. 数据预处理(如果有需要) # 3. 特征选择 rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X, y) feature_importances = rf.feature_importances_ selector = SelectFromModel(rf, threshold='median', prefit=True) X_selected = selector.transform(X) selected_features = X.columns[selector.get_support()] # 4. 输出结果为CSV文件(候选特征) selected_data = pd.concat([y, pd.DataFrame(X_selected, columns=selected_features)], axis=1) selected_data.to_csv('selected_features.csv', index=False) # 5. 输出排名前50的特征为CSV文件 feature_importances_df = pd.DataFrame({'Feature': selected_features, 'Importance': feature_importances}) top_50_features = feature_importances_df.nlargest(50, 'Importance') top_50_features.to_csv('top_50_features.csv', index=False) # 6. 绘制特征重要性图表 plt.bar(feature_importances_df['Feature'], feature_importances_df['Importance']) plt.xticks(rotation=90) plt.xlabel('Feature') plt.ylabel('Importance') plt.title('Feature Importance') plt.show() ``` 在修正后的代码中,我将 `selected_features` 和 `feature_importances` 作为字典传递给 `pd.DataFrame`,以确保它们具有相同的长度。另外,我还添加了一个特征重要性的图表绘制部分。请确保你的数据集中的特征名称与代码中的特征名称一致,并确保已安装所需的Python库(如pandas、numpy、sklearn和matplotlib)。

相关推荐

import pandas as pd import math as mt import numpy as np from sklearn.model_selection import train_test_split from Recommenders import SVDRecommender triplet_dataset_sub_song_merged = triplet_dataset_sub_song_mergedpd triplet_dataset_sub_song_merged_sum_df = triplet_dataset_sub_song_merged[['user','listen_count']].groupby('user').sum().reset_index() triplet_dataset_sub_song_merged_sum_df.rename(columns={'listen_count':'total_listen_count'},inplace=True) triplet_dataset_sub_song_merged = pd.merge(triplet_dataset_sub_song_merged,triplet_dataset_sub_song_merged_sum_df) triplet_dataset_sub_song_merged['fractional_play_count'] = triplet_dataset_sub_song_merged['listen_count']/triplet_dataset_sub_song_merged small_set = triplet_dataset_sub_song_merged user_codes = small_set.user.drop_duplicates().reset_index() song_codes = small_set.song.drop_duplicates().reset_index() user_codes.rename(columns={'index':'user_index'}, inplace=True) song_codes.rename(columns={'index':'song_index'}, inplace=True) song_codes['so_index_value'] = list(song_codes.index) user_codes['us_index_value'] = list(user_codes.index) small_set = pd.merge(small_set,song_codes,how='left') small_set = pd.merge(small_set,user_codes,how='left') mat_candidate = small_set[['us_index_value','so_index_value','fractional_play_count']] data_array = mat_candidate.fractional_play_count.values row_array = mat_candidate.us_index_value.values col_array = mat_candidate.so_index_value.values data_sparse = coo_matrix((data_array, (row_array, col_array)),dtype=float) K=50 urm = data_sparse MAX_PID = urm.shape[1] MAX_UID = urm.shape[0] recommender = SVDRecommender(K) U, S, Vt = recommender.fit(urm) Compute recommendations for test users uTest = [1,6,7,8,23] uTest_recommended_items = recommender.recommend(uTest, urm, 10) Output recommended songs in a dataframe recommendations = pd.DataFrame(columns=['user','song', 'score','rank']) for user in uTest: rank = 1 for song_index in uTest_recommended_items[user, 0:10]: song = small_set.loc[small_set['so_index_value'] == song_index].iloc[0] # Get song details recommendations = recommendations.append({'user': user, 'song': song['title'], 'score': song['fractional_play_count'], 'rank': rank}, ignore_index=True) rank += 1 display(recommendations)这段代码报错了,为什么?给出修改后的 代码

代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)

param = {'num_leaves': 31, 'min_data_in_leaf': 20, 'objective': 'binary', 'learning_rate': 0.06, "boosting": "gbdt", "metric": 'None', "verbosity": -1} trn_data = lgb.Dataset(trn, trn_label) val_data = lgb.Dataset(val, val_label) num_round = 666 # clf = lgb.train(param, trn_data, num_round, valid_sets=[trn_data, val_data], verbose_eval=100, # early_stopping_rounds=300, feval=win_score_eval) clf = lgb.train(param, trn_data, num_round) # oof_lgb = clf.predict(val, num_iteration=clf.best_iteration) test_lgb = clf.predict(test, num_iteration=clf.best_iteration)thresh_hold = 0.5 oof_test_final = test_lgb >= thresh_hold print(metrics.accuracy_score(test_label, oof_test_final)) print(metrics.confusion_matrix(test_label, oof_test_final)) tp = np.sum(((oof_test_final == 1) & (test_label == 1))) pp = np.sum(oof_test_final == 1) print('accuracy1:%.3f'% (tp/(pp)))test_postive_idx = np.argwhere(oof_test_final == True).reshape(-1) # test_postive_idx = list(range(len(oof_test_final))) test_all_idx = np.argwhere(np.array(test_data_idx)).reshape(-1) stock_info['trade_date_id'] = stock_info['trade_date'].map(date_map) stock_info['trade_date_id'] = stock_info['trade_date_id'] + 1tmp_col = ['ts_code', 'trade_date', 'trade_date_id', 'open', 'high', 'low', 'close', 'ma5', 'ma13', 'ma21', 'label_final', 'name'] stock_info.iloc[test_all_idx[test_postive_idx]] tmp_df = stock_info[tmp_col].iloc[test_all_idx[test_postive_idx]].reset_index() tmp_df['label_prob'] = test_lgb[test_postive_idx] tmp_df['is_limit_up'] = tmp_df['close'] == tmp_df['high'] buy_df = tmp_df[(tmp_df['is_limit_up']==False)].reset_index() buy_df.drop(['index', 'level_0'], axis=1, inplace=True)buy_df['buy_flag'] = 1 stock_info_copy['sell_flag'] = 0tmp_idx = (index_df['trade_date'] == test_date_min+1) close1 = index_df[tmp_idx]['close'].values[0] test_date_max = 20220829 tmp_idx = (index_df['trade_date'] == test_date_max) close2 = index_df[tmp_idx]['close'].values[0]tmp_idx = (stock_info_copy['trade_date'] >= test_date_min) & (stock_info_copy['trade_date'] <= test_date_max) tmp_df = stock_info_copy[tmp_idx].reset_index(drop=True)from imp import reload import Account reload(Account) money_init = 200000 account = Account.Account(money_init, max_hold_period=20, stop_loss_rate=-0.07, stop_profit_rate=0.12) account.BackTest(buy_df, tmp_df, index_df, buy_price='open')tmp_df2 = buy_df[['ts_code', 'trade_date', 'label_prob', 'label_final']] tmp_df2 = tmp_df2.rename(columns={'trade_date':'buy_date'}) tmp_df = account.info tmp_df['buy_date'] = tmp_df['buy_date'].apply(lambda x: int(x)) tmp_df = tmp_df.merge(tmp_df2, on=['ts_code', 'buy_date'], how='left')最终的tmp_df是什么?tmp_df[tmp_df['label_final']==1]又选取了什么股票?

# seeds = [2222, 5, 4, 2, 209, 4096, 2048, 1024, 2015, 1015, 820]#11 seeds = [2]#2 num_model_seed = 1 oof = np.zeros(X_train.shape[0]) prediction = np.zeros(X_test.shape[0]) feat_imp_df = pd.DataFrame({'feats': feature_name, 'imp': 0}) parameters = { 'learning_rate': 0.008, 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'num_leaves': 63, 'feature_fraction': 0.8,#原来0.8 'bagging_fraction': 0.8, 'bagging_freq': 5,#5 'seed': 2, 'bagging_seed': 1, 'feature_fraction_seed': 7, 'min_data_in_leaf': 20, 'verbose': -1, 'n_jobs':4 } fold = 5 for model_seed in range(num_model_seed): print(seeds[model_seed],"--------------------------------------------------------------------------------------------") oof_cat = np.zeros(X_train.shape[0]) prediction_cat = np.zeros(X_test.shape[0]) skf = StratifiedKFold(n_splits=fold, random_state=seeds[model_seed], shuffle=True) for index, (train_index, test_index) in enumerate(skf.split(X_train, y)): train_x, test_x, train_y, test_y = X_train[feature_name].iloc[train_index], X_train[feature_name].iloc[test_index], y.iloc[train_index], y.iloc[test_index] dtrain = lgb.Dataset(train_x, label=train_y) dval = lgb.Dataset(test_x, label=test_y) lgb_model = lgb.train( parameters, dtrain, num_boost_round=10000, valid_sets=[dval], early_stopping_rounds=100, verbose_eval=100, ) oof_cat[test_index] += lgb_model.predict(test_x,num_iteration=lgb_model.best_iteration) prediction_cat += lgb_model.predict(X_test,num_iteration=lgb_model.best_iteration) / fold feat_imp_df['imp'] += lgb_model.feature_importance() del train_x del test_x del train_y del test_y del lgb_model oof += oof_cat / num_model_seed prediction += prediction_cat / num_model_seed gc.collect()解释上面的python代码

最新推荐

recommend-type

2024年东南亚BCD功率集成电路市场深度研究及预测报告.pdf

东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Python字符串转Float最佳实践:从初学者到专家的进阶指南

![Python字符串转Float最佳实践:从初学者到专家的进阶指南](https://img-blog.csdnimg.cn/img_convert/1678da8423d7b3a1544fd4e6457be4d1.png) # 1. Python字符串转Float基础** Python中字符串转Float的本质是将文本表示的数字转换为浮点数。这在数据处理、科学计算和许多其他应用中至关重要。本章将介绍字符串转Float的基础知识,包括: * **字符串转Float的意义:**理解字符串和浮点数之间的差异,以及为什么需要进行转换。 * **内置函数:**探索float()函数和decima
recommend-type

data.readline

`data.readline()` 是 Python 中用于读取文件中一行文本的方法,通常在处理输入流或文件操作时使用。这个方法通常与内置的 `open()` 函数一起使用,用于逐行读取文件内容。当你调用 `data.readline()` 时,它会返回文件中的下一行文本,直到遇到换行符(`\n`)为止,并且不包含换行符。 例如: ```python with open('file.txt', 'r') as data: line = data.readline() while line: print(line.strip()) # 去除行尾的换行符
recommend-type

基于Springboot的社区医院管理服务系统

"基于Springboot的社区医院管理服务系统是一个使用Java技术,Springboot框架和MySQL数据库开发的本科生毕设项目。系统实现了包括首页、个人中心、用户管理、医生管理、预约医生、就诊信息、诊疗方案、病历信息、健康档案、费用信息和系统管理等功能,旨在提供一个高效便捷的社区医院管理平台,提高服务效率和系统适应性。" 这篇摘要描述了一个基于Web的社区医院管理服务系统,其目标是解决社区医院在信息管理上的难题。系统采用了Java编程语言,利用Springboot框架构建,这使得系统具备了强大的后端支持,能够处理复杂的业务逻辑和数据操作。同时,结合MySQL数据库,确保了数据的稳定存储和快速查询。这样的技术组合在当前信息化时代下,可以实现对社区医院各种信息的高效管理和更新。 系统的核心功能包括用户管理,允许管理员轻松地添加、修改和删除用户信息;医生管理,便于调度和跟踪医生的工作状态;预约医生功能,使患者能够在线预约医疗服务;就诊信息管理,确保医疗记录的准确无误;诊疗方案和病历信息管理,方便医生查阅和更新病人的治疗计划;健康档案管理,为每个用户提供个性化的健康记录;费用信息管理,帮助医院进行财务管理;以及系统管理,用于维护和优化整个系统的运行。 该系统不仅简化了管理员的工作,提高了社区医院的服务效率,还降低了运营成本。同时,通过数字化的方式,向客户和潜在客户展示社区医院的全面信息,提升了服务质量。此外,系统的良好兼容性和适应性使其能够应对不同环境的需求,增强了系统在竞争中的优势。 论文作者通过深入研究和实践,总结了系统的设计背景、技术选型、功能分析和详细设计过程,分享了开发过程中的心得体会。关键词“Java技术”、“社区医院管理服务系统”和“MySQL”表明了系统的关键技术和应用领域。 这个基于Springboot的社区医院管理服务系统是一个综合性的解决方案,它利用先进的信息技术改进了社区医院的服务流程,提升了用户体验,同时也为管理员提供了高效的工具,推动了社区医疗服务行业的现代化进程。